C_{2}-Symmetric ansa-Lanthanidocene Complexes. Synthesis via Silylamine Elimination and β-SiH Agostic Rigidity

Jörg Eppinger, Michael Spiegler, Wolfgang Hieringer, Wolfgang A. Herrmann, and Reiner Anwander*

Contribution from the Anorganisch-chemisches Institut, Technische Universität München, D-85747 Garching, Germany

Received August 4, 1999

Abstract

The synthesis as well as the spectroscopic and structural characterization of a new class of $C_{2^{-}}$ symmetric, mononuclear metallocene complexes of the lanthanide elements is described. Heteroleptic lanthanidocene silylamide complexes have been obtained ate-complex-free according to silylamine elimination reactions of complexes $\mathrm{Ln}\left[\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right]_{3}(\mathrm{THF})_{x}(x=1, \mathrm{Ln}=\mathrm{Sc} ; x=2, \mathrm{Ln}=\mathrm{Y}, \mathrm{La}, \mathrm{Nd}, \mathrm{Lu})$ and linked, substituted cyclopentadiene and indene systems. The molecular structure of $\left[\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)_{2}\right] \mathrm{La}\left[\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right]$ (95% isolated yield) has been determined by X-ray crystallography. Brintzinger-type, indenyl-derived metallocene complexes have been isolated in racemic yields as high as 72%. IR and multinuclear NMR spectroscopy (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{29} \mathrm{Si},{ }^{89} \mathrm{Y}$) reveals the presence of an unprecedented strong diagostic interaction between the electron-deficient metal centers and the SiH moiety of the bis(dimethylsilyl)amide ligand: SiH stretching vibrations as low as $1759 \mathrm{~cm}^{-1}$ and ${ }^{1} J_{\mathrm{Si}, \mathrm{H}}$ coupling constants as low as 133 Hz indicate a distinct weakening of the SiH bonding. X-ray structure analyses of the compounds rac-[Me $\left.\mathrm{Me}_{2} \mathrm{Si}(2-\mathrm{Me}-\mathrm{Benz}-\mathrm{Ind})_{2}\right] \operatorname{Ln}\left[\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right]$ $(\mathrm{Ln}=\mathrm{Y}, \mathrm{Lu})$ and $r a c-\left[\mathrm{Me}_{2} \mathrm{Si}\left(2-\mathrm{Me}-\mathrm{C}_{9} \mathrm{H}_{5}\right)_{2}\right] \mathrm{Ln}\left[\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right](\mathrm{Ln}=\mathrm{Y}, \mathrm{Lu})$ show that the structural features of both the chelating ancillary ligands and such agostically fused metallacycles depend on the type of the ligand and the size of the metal: bite angles Ω of approximately "U-shaped" ansa-ligands as large as $68.2(2)^{\circ}$ and $\mathrm{Ln}-\mathrm{Si}$ and $\mathrm{Ln}-\mathrm{H}$ contacts as close as 3.028(1) and 2.37(3) \AA, respectively, have been detected, the latter forcing very large $\mathrm{Si}-\mathrm{N}-\mathrm{Si}$ angles up to $160.1(2)^{\circ}$. The isolation of reaction intermediates such as $\mathrm{Y}\left[\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right]_{3}(\mathrm{THF})$ and partly exchanged $\left[\mathrm{Me}_{2} \mathrm{Si}(2-\mathrm{Me}-4-\mathrm{Ph}-\mathrm{Ind})_{2} \mathrm{H}\right] \mathrm{Y}\left[\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right]_{2}$ provides mechanistic details of this peculiar silylamine elimination reaction. Additionally, the $\mathrm{p} K_{\mathrm{a}}$ values of various protonated ligands including new 9 -(SiHMe_{2})-fluorene, 3 -(SiHMe_{2})-indene, and 3-($\left.\mathrm{SiHMe}_{2}\right)$-2-Me-indene determined according to the method of Fraser give evidence of a thermodynamically controlled ligand exchange.

Introduction

During the past decade lanthanidocene chemistry developed into a prolific branch of metallocene research. ${ }^{1}$ Although the first lanthanidocene complexes, " $\mathrm{Cp}_{2} \mathrm{LnR}$ ", comprising unsubstituted cyclopentadienyl rings were reported as early as 1963 by Dubeck et al. (Figure 1, A), ${ }^{2}$ it was the discovery of the lanthanidocene-based "Ziegler-Natta" model which decisively stimulated the development of this class of compounds. ${ }^{3}$ Meanwhile, several generations of rare earth metallocene complexes form an integral part of the enantioselective synthesis of both polymers and fine chemicals. ${ }^{4,5}$ For example, achiral

[^0]

A

D

E

F

Figure 1. Various generations of lanthanidocene complexes.
lanthanidocene complexes of type \mathbf{B} promote the stereoregular polymerization of functionalized olefins such as acryl esters, ${ }^{6}$ while C_{1}-symmetric derivatives of type \mathbf{C} selectively catalyze a variety of olefin transformations including the hydroamination/ cyclization of α, ω-aminoolefins. ${ }^{7} C_{2}$-Symmetric yttrocene com-

[^1]plexes of type \mathbf{D} are the only reported single-site rare earth catalysts to be active in propene polymerization. ${ }^{8}$ So far, salt metathesis starting from anhydrous lanthanide chlorides constitutes the only well-examined synthetic access to lanthanidocene derivatives of types $\mathbf{A}-\mathbf{D} .{ }^{9,10}$ However, this route is encumbered by lengthy, tedious, often low-yield syntheses and ate complex formation, resulting in alkali metal- and donor solvent-contaminated products. ${ }^{9,11}$

Since metallocene-mediated stereoselective olefin transformation reactions are governed by ancillary ligand effects comprising steric and electronic factors as well as the induction of chirality, we thought it worthwhile to further investigate the class of C_{2}-symmetric lanthanidocene complexes. Strangely enough, few efforts have been made to extend the ligand spectrum to indenyl or fluorenyl congeners, ${ }^{12}$ considering the benefits to research and industry which evolved from Brintz-inger-type C_{2}-symmetric ansa-zirconocenes. ${ }^{13}$ Recently, we communicated the synthesis of the first C_{2}-symmetric ansayttrocene complexes of type \mathbf{E} according to an amine elimination reaction ${ }^{14}$ which utilizes specialized silylamide complexes $\operatorname{Ln}\left[\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right]_{3}(\mathrm{THF})_{x}(x=1,2)$ as synthetic precursors ("extended silylamide route"). ${ }^{15}$ The decreased steric bulk of the $\left[\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right]$ ligand and THF dissociation are anticipated to render less shielded $\mathrm{Ln}-\mathrm{N}$ bonds prone to extended protontransfer reactions. ${ }^{14,16-18}$ In addition, the thermally very stable " $\mathrm{Ln}\left[\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right]$ " moiety enables ligand-exchange reactions at elevated temperatures and participates in strong diagostic $\mathrm{Ln} \cdots(\mathrm{SiH})_{2}$ interactions. Also recently, in situ alkane elimination reactions, featuring $\mathrm{Ln}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{3}(\mathrm{THF})_{2}$ as the reactive
(7) Arredondo, V. M.; Tian, S.; McDonald, F. E.; Marks, T. J. J. Am. Chem. Soc. 1999, 121, 3633-3639 and references therein.
(8) Mitchell, J. P.; Hajela, S.; Brookhart, S. K.; Hardcastle, K. I.; Henling, L. M.; Bercaw, J. E. J. Am. Chem. Soc. 1996, 118, 1045-1053.
(9) For recent organolanthanide reviews, see: (a) Schumann, H.; MeeseMarktscheffel, J. A.; Esser, L. Chem. Rev. 1995, 95, 865-986. (b) Edelmann, F. T. In Comprehensive Organometallic Chemistry II; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon: Oxford, 1995; Vol. 4, pp 11-212.
(10) Alternative methods of preparation have only rarely been undertaken: (a) Fischer, E. O.; Fischer, H. Angew. Chem. 1964, 76, 52. (b) Hammel, H.; Weidlein, J. J. Organomet. Chem. 1990, 388, 75-87. (c) Watson, P. L.; Whitney, J. F.; Harlow, R. L. Inorg. Chem. 1981, 20, 32713278. (d) Stults, S. D.; Andersen, R. A.; Zalkin, A. Organometallics 1990, 9, 115-122. (e) Mu, Y.; Piers, P. E.; MacDonald, M.-A.; Zaworotko, M. J. Can. J. Chem. 1995, 73, 2233-2238. (f) For further non-salt metathesis routes to organolanthanide complexes, see: Schaverien, C. J. Adv. Organomet. Chem. 1994, 36, 283-362.
(11) Alkali metal ligand ate complexation was reported to markedly affect the stereoselectivity of acrylate polymerization: Yasuda, H.; Ihara, E. Macromol. Chem. Phys. 1995, 196, 2417-2441.
(12) (a) Deacon, G. B.; Newnham, R. H. Aust. J. Chem. 1985, 38, 17571765. (b) Evans, W. J.; Gummersheimer, T. S.; Boyle, T. J.; Ziller, J. W. Organometallics 1994, 13, 1281-1284. (c) Wang, S.; Yu, Y.; Ye, Z.; Qian, C.; Huang, X. J. Organomet. Chem. 1994, 464, 55-58. (d) Qian, C.; Zou, G.; Sun, J. J. Organomet. Chem. 1998, 566, 21-28. (e) Kretschmer, W. P.; Troyanov, S. I.; Meetsma, A.; Hessen, B.; Teuben, J. H. Organometallics 1998, 17, 284-286.
(13) For a recent review, see: Brintzinger, H.-H.; Fischer, D.; Mülhaupt, R.; Rieger, B.; Waymouth, R. M. Angew. Chem. 1995, 107, 1255-1283; Angew. Chem., Int. Ed. Engl. 1995, 34, 1143-1170.
(14) Herrmann, W. A.; Eppinger, J.; Runte, O.; Spiegler, M.; Anwander, R. Organometallics 1997, 16, 1813-1814.
(15) Anwander, R.; Runte, O.; Eppinger, J.; Gerstberger, G.; Spiegler, M.; Herdtweck, E. J. Chem. Soc., Dalton Trans. 1998, 847-858.
(16) Anwander, R. Top. Curr. Chem. 1996, 179, 33-112 and literature cited therein. For examples utilizing this specialized amide precursor, see: (a) Runte, O.; Priermeier, T.; Anwander, R. J. Chem. Soc., Chem. Commun. 1996, 1385-1386. (b) Görlitzer, H. W.; Spiegler, M.; Anwander, R. Eur. J. Inorg. Chem. 1998, 1009-1014.
(17) In contrast, efforts to synthesize lanthanidocene complexes from $\mathrm{Ln}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{3}$ precursor compounds were successful in moderate yields only for derivatives featuring nonlinked cyclopentadienyl ligands and the larger lanthanide(III) cations ($\mathrm{Ln}=\mathrm{La}, \mathrm{Ce}, \mathrm{Sm}$): Booij, M.; Kiers, N. H.; Heeres, H. J.; Teuben, J. H. J. Organomet. Chem. 1989, 364, 79-86.
species, were successfully applied for the synthesis of linked amidocyclopentadienyl derivatives of type F. ${ }^{19}$ However, the synthesis of the thermally labile tris(trimethylsilyl)methyl complexes is successful for the late lanthanide elements only and suffers from ate complexation. ${ }^{20}$

Here, we report on the feasibility of our extended silylamide route for the synthesis of C_{2}-symmetric ansa-lanthanidocene complexes of type \mathbf{E} by considering a variety of representative ligands on the basis of steric and $\mathrm{p} K_{\mathrm{a}}$ criteria. ${ }^{21} \mathrm{~A}$ full account of the synthesis as well as spectroscopic and structural features of these complexes is presented. Companion contributions ${ }^{22,23}$ will address (i) the strength and the features of the $\beta-\mathrm{SiH}$ diagostic interaction from a theoretical point of view and (ii) the kinetics and mechanism of complex racemizations as well as the implication of this diagostic interaction for the generation of high racemic yields.

Results and Discussion

Synthesis of ansa-Lanthanidocene Amides. The applicability of this extended silylamide route was initially probed for the routinely employed bis(2,3,4,5-tetramethyl-1-cyclopenta-2,4dienyl)dimethylsilane $\left(\left[\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{CpH}^{\prime \prime}\right)_{2}\right], \mathbf{1}\right)^{24}$ and subsequently applied to fused cyclopentadienyl ring systems including 2,2-bis(inden-1-yl)propane ($\left[\mathrm{Me}_{2} \mathrm{C}(\operatorname{IndH})_{2}\right]$, 2), bis(2-methylinden-1-yl)dimethylsilane ([$\left.\mathrm{Me}_{2} \mathrm{Si}(2-\mathrm{Me}-\mathrm{IndH})_{2}\right], 3$), bis(2-methyl-4-phenylinden-1-yl)dimethylsilane ($\left[\mathrm{Me}_{2} \mathrm{Si}(2-\mathrm{Me}-4-\mathrm{Ph}-\mathrm{IndH})_{2}\right]$, 4), bis(2-methyl-4,5-benzoinden-1-yl)dimethylsilane ($\left[\mathrm{Me}_{2} \mathrm{Si}\right.$ -(2-Me-Benz-IndH) 2], 5), and bis(fluoren-9-yl)dimethylsilane $\left(\left[\mathrm{Me}_{2} \mathrm{Si}(\mathrm{FluoH})_{2}\right], 6\right) .{ }^{25,26}$ According to Scheme 1, reaction with the bis(dimethylsilyl)amide precursors $7 \mathbf{a}-\mathbf{c}^{16}$ gave the corresponding ansa-lanthanidocene amide complexes.
${ }^{1} \mathrm{H}$ NMR spectroscopy and GC-MS analysis revealed that complete conversion is achieved only at elevated temperatures.

[^2]Scheme 1. Synthesis of C_{2}-Symmetric ansa-Lanthanidocene Amide Complexes According to the Extended Silylamide Route
(
${ }^{a}$ Monocoordination of the ansa-ligand detected only. ${ }^{b}$ Complex detected by NMR spectroscopy only.

Recrystallization of the crude reaction products from n-hexane or toluene solutions afforded the pure compounds. The overall yield of the homologous bis(dimethylsilyl)amide complexes $\left[\mathrm{SiMe}_{2}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)_{2}\right] \mathrm{Ln}\left[\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right](\mathbf{1 1 b}, \mathbf{c})$ is almost double that of the corresponding bis(trimethylsilyl)amide derivatives $\left[\mathrm{SiMe}_{2}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)_{2}\right] \operatorname{Ln}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]$ obtained by conventional salt metathesis. ${ }^{27}$

Crystallization of the ansa-bis(indenyl) complexes afforded the pure rac-form in moderate to good yields. The mesoderivatives were obtained as THF adducts which could not be isolated in pure form. NMR spectra of the meso-isomers usually display broad signals at room temperature. ${ }^{22}$ The yields of the rac-isomers could be increased by prolonged thermal treatment via consecutive refluxing in toluene and mesitylene (two-step synthesis). This enrichment of the rac-form can be explained in terms of donor (THF) evaporation during boiling and a racl meso equilibrium shift due to donor displacement. ${ }^{22}$

Use of the SiMe_{2}-linked indene $\mathbf{3}$ carrying a methyl group in the 2-position resulted in the isolation of the first Brintzingertype ansa-lanthanidocene complexes $\mathbf{1 3} .{ }^{16}$ The development of the two-step synthesis allowed the synthesis of ansa-indenyl complexes covering the entire range of rare earth cation radii. However, formation of derivatives of the smaller $\mathrm{Sc}($ III $)$ and $\mathrm{Lu}(\mathrm{III})$ was hampered by long reaction times and moderate racemic yields. The highest racemic yields were achieved for medium-sized yttrium in complex 13b. Attempts to synthesize the corresponding bis(trimethylsilyl)amide complex from $\mathbf{3}$ and $\mathrm{Y}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{3}$ failed due to decomposition reactions during prolonged heating. ${ }^{18,28}$ This finding emphasizes the necessity for synthetic precursors carrying sterically more flexible, readily exchangeable amide ligands.

The reactivity of indene $\mathbf{4}$ featuring phenyl substitution in the 4 -position was markedly decreased. Only for the larger

Scheme 2. Utilization of a Linked 4,5-Substituted Benzoindene System 5 for the Synthesis of the ansa-Yttrocene Amide Complex 15b According to the Extended Silylamide Route ($5=(2-\mathrm{Me}-\mathrm{Benz-IndH})_{2} \mathrm{SiMe}_{2}$; $\left.\mathrm{R}=\mathrm{SiHMe}_{2}\right)^{a}$

rac-15
($50-70 \%$)
meso-15
${ }^{a}$ The meso-isomer was detected as mono-THF adduct by NMR spectroscopy.
$\mathrm{La}($ III) cation could an ansa-complex be isolated (rac-14c). The putative yttrium complex could not be obtained. Instead, monocoordination of the ancillary ligand was observed to yield $\left[\mathrm{Me}_{2} \mathrm{Si}(2-\mathrm{Me}-4-\mathrm{Ph}-\mathrm{Ind})_{2} \mathrm{H}\right] \mathrm{Y}\left[\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right]_{2}(\mathbf{1 4 b})$, which can be seen as a reaction intermediate of the ansa-complex formation according to Scheme 3. The yield of the pure yttrium complex rac-12b derived from the propylidene-bridged indenyl ligand was also low. This can be attributed to a more opened coordination sphere at the metal center, arising from the absence of a methyl group in the 2-position and a short propylidene ansa-bridge. The increased bite angle of the ligand enhances the electron deficiency of the metal center, which disfavors donor (THF) dissociation, the latter being a prerequisite of high racemic yields. The attempted synthesis of the corresponding lanthanum complex 12c is in accord with this finding: the larger lanthanum center discourages the ansa-coordination mode, probably forming an oligomeric product which is barely soluble in tetrahydrofuran.

In contrast, the 4,5-substituted benzoindene 5 exhibits substantially higher reactivity, and the resulting complexes $\mathbf{1 5}$ reveal amazingly high racemic yields (Scheme 2). The implications of the 4,5-benzo substitution vs the 4 -phenyl substitution for the synthetic outcome will be discussed below. The lower yield of the lanthanum derivative $\mathbf{1 5} \mathrm{c}$ compared to the homologous yttrium compound 15b probably reflects the tendency for $\mathrm{Si}-\mathrm{C}$ bond-breaking during the synthesis of these complexes at elevated temperatures. ${ }^{22}$ Bis(fluorene) 6 gave roughly a 7% yield of complex $\mathbf{1 6 b}$ as detected by ${ }^{1} \mathrm{H}$ NMR.

Elemental analyses of complexes 11, 12, 13, and 15 are consistent with complete THF displacement at the metal center. The enhanced thermal stability of the novel ansa-lanthanidocene complexes is also revealed by their CI mass spectra. In addition to the intense peaks of the parent molecular ions, fragmentation occurred mainly due to methyl- and bis(dimethylsilyl)amide separation. A dinuclear species was detected for the isopropyl-idene-bridged derivative 12b, pointing out redistribution reactions of the ancillary ligand. ${ }^{29}$ All of the isolated bis(cyclopentadienyl) and rac-bis(indenyl) metallocene amide complexes

[^3]Table 1. Selected IR and NMR Spectroscopic Data for Bis(dimethylsilyl)amide Complexes

compound	$\mathrm{IR}^{a} \nu_{(\mathrm{SiH})}\left(\mathrm{cm}^{-1}\right)$	${ }^{1} \mathrm{H} \mathrm{NMR}^{b} \delta_{(\mathrm{SiH})}(\mathrm{ppm})$	${ }^{29} \mathrm{Si} \mathrm{NMR}^{b} \delta_{(\mathrm{Si})}(\mathrm{ppm})\left({ }^{1} J_{\mathrm{Si}, \mathrm{H}}\right)$
$\left[\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{Cp}^{\prime \prime}\right)_{2}\right] \mathrm{YN}\left(\mathrm{SiHMe}_{2}\right)_{2}$ (11b)	1789	4.00 (dsp)	-19.9 (147)
$\left[\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{Cp}^{\prime \prime}\right)_{2}\right] \mathrm{LaN}\left(\mathrm{SiHMe}_{2}\right)_{2}(11 \mathrm{c})$	1845	4.18 (m)	-17.3 (150)
rac-[$\left.\mathrm{Me}_{2} \mathrm{C}(\mathrm{Ind})_{2}\right] \mathrm{YN}\left(\mathrm{SiHMe}_{2}\right)_{2}($ rac-12b)	1821	3.56 (dsp) ${ }^{\text {c }}$	- (152)
rac- $\left[\mathrm{Me}_{2} \mathrm{Si}(2-\mathrm{Me}-\mathrm{Ind})_{2}\right] \mathrm{ScN}\left(\mathrm{SiHMe}_{2}\right)_{2}(\mathrm{rac}-13 \mathrm{a})$	2012/1793	2.96 (m)	- (155)
$\mathrm{rac}-\left[\mathrm{Me}_{2} \mathrm{Si}(2-\mathrm{Me}-\mathrm{Ind})_{2}\right] \mathrm{YN}\left(\mathrm{SiHMe}_{2}\right)_{2}($ rac-13b)	1804	2.97 (dsp) ${ }^{\text {c }}$	- (142)
rac- $\left[\mathrm{Me}_{2} \mathrm{Si}(2-\mathrm{Me}-\mathrm{Ind})_{2}\right] \mathrm{LaN}\left(\mathrm{SiHMe}_{2}\right)_{2}($ rac-13c)	1838	3.74 (m)	- (145)
rac- $\left[\mathrm{Me}_{2} \mathrm{Si}(2-\mathrm{Me}-\mathrm{Ind})_{2}\right] \mathrm{NdN}\left(\mathrm{SiHMe}_{2}\right)_{2}($ rac-13d)	1824	$-{ }^{\text {d }}$	d
rac- $\left[\mathrm{Me}_{2} \mathrm{Si}(2-\mathrm{Me}-\mathrm{Ind})_{2}\right] \mathrm{LuN}\left(\mathrm{SiHMe}_{2}\right)_{2}($ rac-13e)	1759	3.29 (sp) ${ }^{\text {c }}$	- (146)
$\left[\mathrm{Me}_{2} \mathrm{Si}(2-\mathrm{Me}-4-\mathrm{Ph}-\mathrm{Ind})_{2} \mathrm{H}\right] \mathrm{Y}\left[\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right]_{2}(\mathbf{1 4 b})$	2069/1830	4.31 (dsp)	- (148)
rac- $\left[\mathrm{Me}_{2} \mathrm{Si}(2-\mathrm{Me}-4-\mathrm{Ph}-\mathrm{Ind})_{2}\right] \mathrm{LaN}\left(\mathrm{SiHMe}_{2}\right)_{2}(\mathrm{rac}-14 \mathrm{c})$	1832	3.87 (m)	- (141)
rac-[$\left.\mathrm{Me}_{2} \mathrm{Si}(2-\mathrm{Me}-\mathrm{Benz}-\mathrm{Ind})_{2}\right] \mathrm{YN}\left(\mathrm{SiHMe}_{2}\right)_{2}($ rac-15b)	1811	2.65 (dsp) ${ }^{c}$	-26.6 (133)
rac- $\left[\mathrm{Me}_{2} \mathrm{Si}(2-\mathrm{Me}-\mathrm{Benz}-\mathrm{Ind})_{2}\right] \mathrm{LaN}\left(\mathrm{SiHMe}_{2}\right)_{2}(\mathrm{rac}-15 \mathrm{c})$	1838	3.30 (m)	- (140)
rac- $\left[\mathrm{Me}_{2} \mathrm{Si}(2-\mathrm{Me}-\mathrm{Benz}-\mathrm{Ind})_{2}\right] \mathrm{LuN}\left(\mathrm{SiHMe}_{2}\right)_{2}(\mathrm{rac}-15 \mathrm{e})$	1773	2.98 (sp) ${ }^{\text {c }}$	- (142)
$\left.\left[\mathrm{Me}_{2} \mathrm{Si} \text { (Fluo) }\right)_{2}\right] \mathrm{YN}\left(\mathrm{SiHMe}_{2}\right)_{2}(\mathbf{1 6 b})$	-e	3.21 (sp)	-f
$\mathrm{Ln}\left[\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right]_{3}(\mathrm{THF})_{x}(7, x=1,2)($ ref 16)	2051-2072, 1931-1970 (sh)	4.94-5.02 (sp)	-19.3 to $-26.0(162-171)$
$\left\{\mathrm{ZrCl}\left[\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right]_{2}(\mu-\mathrm{Cl})\right\}_{2}($ ref 30$)$	2136, 2093, 1948	5.06 (sp)	(

${ }^{a}$ IR spectra were recorded as Nujol mulls. ${ }^{b}$ NMR spectra were recorded at $25{ }^{\circ} \mathrm{C}$ as $\mathrm{C}_{6} \mathrm{D}_{6}$ solutions. ${ }^{c}$ The coupling pattern is of higher order and rather describes the signal shape. ${ }^{d}$ The SiH signal could not be detected due to the paramagnetic neodymium center. ${ }^{e}$ As the isolation of $\mathbf{1 6 b}$ failed, no IR spectrum could be recorded. ${ }^{f}$ The detection of the silicon sidebands was not sufficient for an accurate determination of the ${ }^{1} J_{\mathrm{Si}, \mathrm{H}}$ coupling constant.
display good solubility in warm hydrocarbons, which facilitated their spectroscopic characterization.

Spectroscopic Characterization. The IR spectra of all of the isolated rare earth metallocene bis(dimethylsilyl)amide complexes show a distinct shift ($>200 \mathrm{~cm}^{-1}$) of the $\mathrm{Si}-\mathrm{H}$ stretching frequency to lower energy in comparison to the synthetic precursors $7 \mathbf{a}-\mathbf{c}\left(\mathrm{ca} .2060 \mathrm{~cm}^{-1}\right.$) (see Table 1). ${ }^{16}$ This behavior is particularly pronounced for the smaller cations, indicating the effect of enhanced Lewis acidity. The lutetium complex rac-13e displays a shift as large as $312 \mathrm{~cm}^{-1}$. In general, such a distinct $\mathrm{Si}-\mathrm{H}$ bond-weakening is assigned to agostic interactions. ${ }^{30-32} \mathrm{In}$ fact, these $\mathrm{Si}-\mathrm{H}$ stretching frequencies are significantly lower than those observed for β - SiH interactions in early transition metal complexes. ${ }^{32}$ The bonding mode seems to be even comparable to that in $\mathrm{Mo}-\eta^{2}(\mathrm{Si}-\mathrm{H})$ complexes ($1750-1730 \mathrm{~cm}^{-1}$). ${ }^{33}$

The IR spectrum of the scandium derivative rac-13a shows two well-separated $\mathrm{Si}-\mathrm{H}$ stretching vibrations, while the spectra of the lanthanum, yttrium, and lutetium complexes display a less intense and broadened $\mathrm{Si}-\mathrm{H}$ band, excluding a more detailed interpretation. Interestingly, the scandium complex also shows a band at $1072 \mathrm{~cm}^{-1}$ attributable to a $\nu_{\mathrm{as}}\left(\mathrm{NSi}_{2}\right)$ stretching vibration which reinforces evidence for different coordination modes of the $\mathrm{Ln}-\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}$ moiety.

NMR spectroscopic examinations of the diamagnetic complexes 11b,c, rac-12b, rac-13a-c,e, 14b, rac-14c, rac-15b,c, and $\mathbf{1 6 b}$ were performed to clarify the significant perturbation of the SiH environment. The findings are discussed for the yttrium complexes in more detail. The ${ }^{1} \mathrm{H}$ NMR spectrum of rac-13b is representatively shown in Figure 2.

A strong dependency of the SiH signal on the nature of the metal center and the ligands was observed. In accordance with the IR spectra, the smaller metal cations induce a larger upfield shift of the SiH signal, correlating with an enhanced agostic

[^4]

Figure 2. ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz) of $\left[\mathrm{Me}_{2} \mathrm{Si}(2-\mathrm{Me}-\mathrm{Ind})_{2}\right] \mathrm{Y}$ $\left[\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right](\mathbf{1 3 b})$ as a solution in toluene- d_{8}. The solvent signals are indicated by an asterisk.
interaction of the more Lewis acidic metal center. The ${ }^{1} \mathrm{H}$ NMR spectrum of rac-15b shows a SiH resonance at 2.65 ppm which is 2.33 ppm upfield compared to the signal of $\mathbf{7 b}$ (Table 1). Such drastic upfield shifts were also found in related zirconocene complexes. ${ }^{32}$ In addition, the dramatic $\mathrm{Si}-\mathrm{H}$ upfield shifts seem to be associated with the presence of extended aromatic ring systems, increasing in the order $\mathbf{1}<\mathbf{2}, \mathbf{3}, \mathbf{4}<\mathbf{5}<\mathbf{6}$. ${ }^{34,35}$

Examination of the SiH coupling pattern indicates the presence of a $J_{\mathrm{Ln}, \mathrm{H}}$ coupling in all of the ansa-metallocene amide complexes. Whereas the complexes of the metals with $I>1 / 2$ ($\mathrm{Sc}, \mathrm{La}, \mathrm{Lu}$) produce poorly resolved multiplets, the SiH resonances of the yttrocene amide complexes resemble a nonet, which is derived from a doublet of septets, as peak intensities suggest. The doublet splitting in the range of 2.9 (11b) -5.0 Hz (rac-15b) which occurs in addition to the ${ }^{3} J_{\mathrm{H}, \mathrm{H}}$ coupling (about 2.5 Hz) can be assigned to a $\mathrm{H} \cdots \mathrm{Y} \cdots \mathrm{H}$ coupling. ${ }^{36}$ Relatively small ${ }^{1} \mathrm{H}-{ }^{29} \mathrm{Si}$ coupling constants document a significant lengthening of the SiH bond (Table 1), ${ }^{37}$ the value of 133 Hz for rac-15b suggesting a considerable activation of

[^5]the $\mathrm{Si}-\mathrm{H}$ bond by metal coordination. ${ }^{33,38,39}$ The recorded ${ }^{29} \mathrm{Si}$ resonances range from -26.6 ($\mathrm{rac}-\mathbf{1 1 b}$) to -17.3 ($\mathrm{rac}-\mathbf{1 5 b}$) and from - 32.5 ($\mathrm{rac}-\mathbf{1 1 b}$) to $-15.9 \mathrm{ppm}(\mathrm{rac}-\mathbf{1 5 b})$ for $\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}$ and the SiMe_{2}-ansa-bridge, respectively. The proton-decoupled ${ }^{29}$ Si NMR spectrum of rac-15b displays two doublets due to ${ }^{29} \mathrm{Si}-{ }^{89} \mathrm{Y}$ coupling of both the dimethylsilylamide moiety (12.2 $\mathrm{Hz})$ and the dimethylsilyl bridge $(1.2 \mathrm{~Hz}){ }^{40}$ Perhaps the most striking feature of the new ansa-metallocene amide complexes is their rigidity in solution, as evidenced by the persistence of the $\mathrm{H} \cdots \mathrm{Y} \cdots \mathrm{H}$ coupling. The ${ }^{1} \mathrm{H}$ NMR spectra of complexes $\mathbf{1 3 a}, \mathbf{b}$ and $\mathbf{1 5 b}$ in toluene- d_{8} reveal the absence of any significant signal shift or change of coupling pattern in the temperature range from -90 to $130{ }^{\circ} \mathrm{C}$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ resonances of the methylsilyl(amido) group of the racemic compounds appear as two doublets and a doubled singlet, respectively, as expected for two methyl groups with different chemical environments. In contrast, the $C_{2 v}$-symmetric complexes $\mathbf{1 1 b}$ and $11 \mathbf{c}$ display only one doublet and a singlet, respectively. However, the latter complexes show the same SiH coupling pattern as the $C_{2}{ }^{-}$ symmetric derivatives, indicating that this coupling pattern results from $\mathrm{Ln}-\mathrm{H}$ coupling and not from the diastereotopy of the two methyl groups.

The presence of a $\mathrm{Y}-\mathrm{H}$ coupling was unequivocally proven by ${ }^{89} \mathrm{Y}$ NMR spectroscopy. The ${ }^{89} \mathrm{Y}$ NMR spectrum of rac$\mathbf{1 5 b}$ shows a triplet with a ${ }^{89} \mathrm{Y}-{ }^{1} \mathrm{H}$ coupling constant of 4.7 Hz (Figure 3b). This relatively small coupling constant ${ }^{41}$ is in good agreement with the value derived from the ${ }^{1} \mathrm{H}$ NMR spectrum $\left(J_{\mathrm{Y}, \mathrm{H}}=5.0 \mathrm{~Hz}\right)$. The visible ${ }^{29} \mathrm{Si}$ satellites display a coupling constant of $19.5 \mathrm{~Hz} .{ }^{40}$ The shielding ring current of the aromatic indenyl ligands results in a dramatic upfield shift of the ${ }^{89} \mathrm{Y}$ signal to -96.7 ppm compared to that of the amide precursor $7 \mathbf{b}(\delta=444 \mathrm{ppm}) . .^{16,42}$ The distinct temperature dependency of this chemical shift was demonstrated by measurements at ca. $25^{\circ} \mathrm{C}(\delta=-96.7 \mathrm{ppm})$ and constant $30^{\circ} \mathrm{C}(\delta=-93.5 \mathrm{ppm})$.

[^6]

Figure 3. ${ }^{89} \mathrm{Y}$ NMR spectra of rac-15b without (ca. $25^{\circ} \mathrm{C}$; a) and with $\left(30.0 \pm 0.1^{\circ} \mathrm{C} ; \mathrm{b}\right)$ temperature control.

Figure 4. NOE enhancements and solid-state structure bonding distances of the two diastereotopic methyl groups of the amide moiety of rac-15b.

Without temperature regulation, the signal appears as a noninterpretable pseudoquartet (Figure 3a). ${ }^{43}$

The β - SiH agostic rigidity of the amide fragment could be further corroborated by ${ }^{1} \mathrm{H}$ NMR-NOE spectroscopy of rac15b. Due to the fixed arrangement, the two diastereotopic methyl(silylamide) groups display only one intense NOE signal between the less upfield-shifted methyl resonance and the signal of the hydrogen atom H 3 of the benzoindenyl moiety (13.5% enhancement). All of the other enhancements resulting from proton coupling with the amide ligand fragment are below 1% (Figure 4). These findings are in accordance with the observed distances in the solid-state structure which reveal a relatively close contact of ca. $3.2 \AA$ between the averaged methyl hydrogen atoms of the amide ligand and the H3 hydrogen atom. This

[^7]Table 2. Selected Structural Parameters for Lanthanidocene Complexes

	11c ($\mathrm{Ln}=\mathrm{La}$)	$r a c-13 b^{c}(\mathrm{Ln}=\mathrm{Y})$	$\operatorname{rac}-\mathbf{1 3} \mathbf{e}^{c}(\mathrm{Ln}=\mathrm{Lu})$	$r a c-15 b(\mathrm{Ln}=\mathrm{Y})$	$r a c-15 \mathrm{e}(\mathrm{Ln}=\mathrm{Lu})$
Bond Distances (\AA)					
av. $\mathrm{Ln} 1-\mathrm{C}_{\mathrm{Cp}}$	2.799	2.663	2.614	2.666	2.627
$\min . \operatorname{Ln} 1-\mathrm{C}_{\mathrm{Cp}}$	2.738(2)	2.627(3)	2.574(3)	2.609(3)	2.577(6)
max. Ln $1-\mathrm{C}_{\mathrm{Cp}}$	2.867(3)	2.697 (3)	2.651(3)	2.719(4)	2.670(6)
$\mathrm{Ln} 1-\mathrm{C}_{\mathrm{g}} 1^{a}$	2.523 (1)	$2.371(2)$	$2.315(2)$	$2.378(2)$	2.328 (2)
Ln1-Cg 2^{a}	2.526 (1)	2.371(2)	2.315 (2)	2.372 (2)	2.327 (2)
Ln1-N1	2.449 (3)	2.237(4)	2.159(4)	2.274(3)	2.173(5)
Ln1-Si1	3.246 (1)	3.082(1)	$3.116(1)$	3.028(1)	3.277(2)
Ln1-Si2	3.244(1)	3.082(1)	$3.116(1)$	3.034(1)	3.041 (2)
Ln1-Si3	3.494(1)	$3.387(2)$	$3.347(1)$	3.416 (1)	$3.384(2)$
$\mathrm{Ln} 1-\mathrm{H} 1^{\text {b }}$	2.70 (3)	2.54(2)	2.63(2)	2.37(3)	3.05(2)
Ln $1-\mathrm{H} 2^{\text {b }}$	2.66(4)	2.54(2)	2.63(2)	2.38(3)	2.66(2)
N1-Si1	1.661(3)	1.666(1)	1.676(2)	1.660 (3)	$1.656(6)$
N1-Si2	1.663 (3)	$1.666(1)$	$1.676(2)$	1.661(3)	1.682(6)
$\mathrm{Si} 1-\mathrm{H} 1^{b}$	1.39 (3)	1.45 (2)	1.42 (5)	1.45 (3)	1.45 (2)
$\mathrm{Si} 2-\mathrm{H} 2^{\text {b }}$	1.38(4)	1.45(2)	1.42(5)	1.47(3)	1.45 (2)
Bond Angles (deg)					
$\mathrm{C}_{\mathrm{g}} 1-\mathrm{Ln} 1-\mathrm{C}_{\mathrm{g}} 2^{a}$	118.53(2)	123.14(2)	125.3(2)	122.75(1)	124.58(2)
$\mathrm{Si} 1-\mathrm{N} 1-\mathrm{Si} 2$	154.9(2)	153.3(2)	144.0(2)	160.1(2)	139.3(4)
Ln1-N1-Si1	102.6(1)	103.4(1)	108.0(1)	99.5(2)	117.1(3)
Ln1-N1-Si2	102.5(1)	103.4(1)	108.0(1)	99.7(1)	103.4(3)
N1-Si1-H1	103(1)	100(1)	98(2)	98(1)	103.7
N1-Si2-H2	101(2)	100(1)	98(2)	98(1)	104.6
H1-Ln1-H2	109(1)	119.1(8)	115.6(14)	121.4(10)	113.4
Dihedral Angles (deg)					
Ln1-N1-Si1-H1	-1(1)	3(1)	4.3(2)	6(1)	-11.5
Ln1-N1-Si2-H2	4(2)	-3(1)	-4.3(2)	3(1)	-7.8

[^8]

Figure 5. Definition of twisted geometry angles summarized in Table 3.
rigidity of the silylamide moiety explains the strong dependency of the $\mathrm{Si}-\mathrm{H}$ upfield shift on the type of ansa-ligand as described above: the SiH group located below the shielding ring current 34,35 of the aromatic ligand is sensitive toward both a decreasing cationic radius and extension of the fused aromatic rings into the environment of the amide fragment.

Molecular Structures of the ansa-Lanthanidocene Amides 11c, rac-13b, rac-13e, rac-15b, and rac-15e

General Features. Single-crystal X-ray structural determinations were carried out on selected ansa-lanthanidocene amide complexes in order to unambiguously establish the C_{2} symmetry of the bis(indenyl) complexes and to detect any systematic structural features. For ease of comparison, key parameters of the metallocene amide complexes are listed in Table 2. Details of the ligand framework are described by several angles between selected planes and compared to relevant data from the literature (Figure 5, Table 3).

All of the complexes display an almost perfect trigonal planar arrangement of the amide and the ansa-ligand. The $\mathrm{C}_{\mathrm{g}}-\mathrm{Ln}-$ C_{g} angle increases slightly with decreasing cation size (C_{g} is the center of the five-membered ring). In all of the molecular structures, both of the $\mathrm{Si}-\mathrm{H}$ moieties approach the $\mathrm{Ln}(\mathrm{III})$ center
in an agostic manner. So far, it was the asymmetric, monoagostic approach of one SiMe_{3} moiety exclusively which has been found in heteroleptic metallocene complexes carrying silylamide as well as silylated hydrocarbon substituents. ${ }^{9,44-46}$ Although this series of ansa-metallocene complexes exhibits a similar molecular coordination geometry, both ansa-ligand and metal variation have significant implications for the β - SiH agostic interaction of the silylamide fragment. The present close $\mathrm{Ln} \cdots$ Si contacts ranging from 3.028(1) to 3.246(1) A already resemble $\mathrm{Ln}-\mathrm{Si} \sigma$-bond distances, ${ }^{47}$ suggesting an appreciable interaction in the solid state, which remains in solution, as indicated by the spectroscopic investigations discussed above. Additionally, close Ln $\cdots \mathrm{H}$ contacts ${ }^{48}$ (2.38(3)-2.70(3) A) at the upper end of covalent $\mathrm{Ln}-\mathrm{H}$ bonds ${ }^{49}$ complete the formation of agostically fused $\mathrm{Ln}-\mathrm{N}-\mathrm{Si}-\mathrm{H}$ four-membered rings. These rings display only small torsional angles $\left(1(1)-6(1)^{\circ}\right)$ and are located in a plane almost parallel to the bisector of the two

[^9]Table 3. Selection of Twisted Geometry Parameters (deg) for Lanthanidocene Amide and Comparable Complexes

compound	α^{a}	β^{a}	γ^{a}	Ω^{a}	Θ^{a}
11c	102.8(1)	16.6(2)/18.1(2)	-	68.2(2)	2.56(8)
rac-13b	100.9(1)	19.9(2)	1.8(2)	61.2(2)	5.31(9)
rac-13e	99.7(2)	19.8(2)	1.5(2)	59.7(2)	4.5(2)
rac-15b	98.7(2)	17.9(2)/17.6(2)	5.5(2)/4.9(2)	66.0(1)	7.74(9)
rac-15e	98.1(3)	18.5(3)/18.6(3)	5.3(3)/2.3(3)	65.6(2)	11.0(7)
rac-12b(THF) (ref 23)	103.1(2)	12.3(2)/12.3(2)	3.0(2)/4.1(1)	82.5(1)	45.8(3)
$\left[\mathrm{Me} 2 \mathrm{Si}\left(\mathrm{Cp}^{\text {Menthyl }}\right)_{2}\right] \mathrm{Y}-\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}($ ref 27$)$	98.2	16.6/15.8	-	66.1/69.2	6.7/15.0
Cp* ${ }_{2} \mathrm{YN}\left(\mathrm{SiMe}_{3}\right)_{2}($ ref 50)	-	15.5	-	45.2	-
$\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Et}\right)_{2} \mathrm{YN}\left(\mathrm{SiMe}_{3}\right)_{2}($ ref 51)	-	14.7	-	47.19	-
$\left\{\left[\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{Cp}^{\prime \prime}\right)_{2}\right] \mathrm{ThH}_{2}\right\}_{2}($ ref 52)	102.6/98.5	13.1/16.2 11.2/16.8	-	73.3/70.6	-b
$\left[\mathrm{Me}_{2} \mathrm{Si}(2-\mathrm{Me}-\mathrm{Ind})_{2}\right] \mathrm{ZrCl}_{2}($ ref 25 b$)$	94.4	17.4/16.8	2.6/5.0	60.2	1.3
$\left[\mathrm{Me}_{2} \mathrm{Si}(2-\mathrm{Me}-\mathrm{Benz-Ind})_{2}\right] \mathrm{ZrCl}_{2}($ ref 25 c$)$	94.8	17.0	1.7	61.6	0.8

${ }^{a}$ For angle definitions see Figure 5. ${ }^{b}$ No hydrogen atom positions available.
cyclopentadienyl and indenyl rings, respectively. The strong symmetric Ln \cdots SiH interaction causes extremely widened $\mathrm{Si}-$ $\mathrm{N}-$ Si angles $\left(144.0(2)-160.1(2)^{\circ}\right)$ and a concomitant significant contraction of both $\mathrm{Ln}-\mathrm{N}-\mathrm{Si}$ angles $\left(99.5(2)-108.0(1)^{\circ}\right)$; the range observed for the amide precursors 7 is $109.0(3)-123.2-$ (2) ${ }^{\circ} .{ }^{16}$ The two methyl groups of each silylamide silicon atom are mirrored by the $\mathrm{Si}-\mathrm{N}-\mathrm{Si}$ plane. Interestingly, the lutetium complex rac-15e features a slightly perturbated silylamide coordination, probably as a result of peculiar steric constraints (vide infra).

Details of the Molecular Structures. Compound $\left[\mathrm{Me}_{2^{-}}\right.$ $\left.\mathrm{Si}\left(\mathrm{Cp}^{\prime \prime}\right)_{2}\right] \mathrm{La}\left[\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right](11 \mathrm{c})$ crystallizes in the triclinic space group $P \overline{1}$. The C_{2}-symmetric ansa-indenyl compounds exhibit centrosymmetric unit cells of $C 2 / c$ symmetry for the homologous ansa-metallocenes rac-13b and rac-13e and of $P \overline{1}$ symmetry for $r a c-15 \mathrm{~b}$ and $r a c-15 \mathrm{e}$, respectively.

The molecular structure of the $C_{2 v}$-symmetric complex $11 \mathbf{c}$ (Figure 6) resembles those of the numerous structurally characterized complexes of type " $\mathrm{Cp}_{2} \mathrm{LnX}$ ", in particular that of $\mathrm{Cp}{ }_{2} \mathrm{Y}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right],{ }^{50}$ adopting the typical bent metallocene arrangement. ${ }^{9}$ The $\mathrm{La}-\mathrm{C}$ distances range from 2.738(2) to 2.786 (7) \AA, the ipso-carbon atom being the closest to the La(III) cation. The cyclopentadienyl rings are tilted against the $\mathrm{Si} 3-\mathrm{C}_{i p s o}$ axis toward the metal center $\left(\beta=16.6(2)^{\circ} / 18.1(2)^{\circ}\right)$, while the $\mathrm{C}_{i p s o}-\mathrm{Si} 3-\mathrm{C}_{i p s o}$ angle is only slightly contracted $(\alpha$ $\left.=102.8(1)^{\circ}\right)$ (Figure 5 and Table 3). Such a "U-shaped" ($\beta \gg$ 0) coordination of the linked cyclopentadienyl ligand seems to be directed by the large metal center. These angle distortions generate an ipso carbon atom of enhanced sp^{3}-character. In comparable actinide and zirconocene complexes, the deviation of the "V-shaped" $(\beta \approx 0)$ ligand coordination appears less pronounced (Table 3). The smaller $\mathrm{Zr}(\mathrm{IV})$ centers can be accommodated by ansa-ligands via a more contracted angle α ($94.4-94.8^{\circ}$) and a comparable tilt angle $\beta\left(16.8-17.4^{\circ}\right),{ }^{25 \mathrm{~b}, \mathrm{c}}$ whereas the larger $\mathrm{Th}(\mathrm{IV})$ complex displays tentatively less tilted cyclopentadienyl planes $\left(\beta=11.2-16.8^{\circ}\right.$). ${ }^{52,53}$

Despite the distinctly U-shaped ansa-ligand in 11c, the large lanthanum cation forces a large bite angle Ω of $68.2(2)^{\circ}$, which is exceeded only by those of complex $\left\{\left[\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{Cp}^{\prime \prime}\right)_{2}\right] \mathrm{ThH}_{2}\right\}_{2}{ }^{52}$

[^10]

Figure 6. PLATON ${ }^{80}$ drawing of 11c. Atoms are represented by thermal ellipsoids at the 50% level. Except for $\mathrm{H}(1)$ and $\mathrm{H}(2)$, all hydrogen atoms are omitted for clarity. For selected distances and angles, see Tables 2 and 3.
($\Omega=73.3 / 70.6^{\circ}$) and the propylidene-bridged ansa-complex rac-12b(THF) $(\Omega=82.5) .{ }^{23}$ Such large bite angles are assumed to facilitate the diagostic approach of the dimethylsilylamide moiety to the Lewis acidic metal ion. The $\mathrm{La}-\mathrm{N}$ bond length of 2.449 (3) \AA compares well with the $\mathrm{La}-\mathrm{N}$ distances in ninecoordinated $\left[\mathrm{Cp}{ }_{2} \mathrm{La}\right]\left[\mu-\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right](2.452(2) \AA)^{54}$ and appears markedly elongated compared to those in eight-coordinated complex $\mathrm{Cp}^{*}{ }_{2} \mathrm{La}(\mathrm{NHMe})\left(\mathrm{H}_{2} \mathrm{NMe}\right)(2.32(1) \AA)^{55}$ and its fivecoordinated synthetic precursor $\left(2.395(5)-2.416(5) \AA\right.$)..15 The $\mathrm{La}-\mathrm{Si}(3.2460(9) / 3.2440(9) \AA)$ and $\mathrm{La}-\mathrm{H}(2.70(3) / 2.66(4) \AA)$ contacts are slightly elongated compared to those of σ-bonded silicon ${ }^{47}$ and bridging hydride ligands, ${ }^{49}$ respectively, taking into

[^11]

Figure 7. PLATON ${ }^{80}$ drawing of $r a c-13 e$. Atoms are represented by thermal ellipsoids at the 30% level. Except for $\mathrm{H}(2)$ and $\mathrm{H}(2 a)$, all hydrogen atoms are omitted for clarity. For selected distances and angles see Tables 2 and 3. rac-13b is isostructural. ${ }^{14}$

Figure 8. PLATON ${ }^{80}$ drawing of $r a c-\mathbf{1 5 b}$. Atoms are represented by thermal ellipsoides at the 50% level. Except for $\mathrm{H}(1)$ and $\mathrm{H}(2)$, all hydrogen atoms are omitted for clarity. For selected distances and angles see Tables 2 and 3.
account the different cation size and coordination number. ${ }^{56}$ Similar bonding parameters were recently detected in the singlecrystal neutron diffraction structures of the monoagostic complex $\mathrm{Cp} * \mathrm{La}\left[\mathrm{CH}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{2}(\mathrm{La} \cdots \mathrm{Si}, 3.35(1)-3.42(1) \AA)^{57}$ and the polyagostic complex $\mathrm{Nd}\left[\mathrm{AlMe}_{4}\right]_{3}\left(\mathrm{Al}_{2} \mathrm{Me}_{6}\right)_{0.5}(\mathrm{Nd} \cdots \mathrm{H}, 2.65(1)$ A). ${ }^{58 a}$

The X-ray structure analyses of the bis(indenyl) complexes rac-13b, rac-13e, rac-15b, and rac-15e reveal the transcoordination of the chelating ligands, which determines the C_{2} symmetry of the thermodynamically more favorable raccomplexes as presented in Figures 7-9. Their overall geometry is analogous to that of the $C_{2 v}$-symmetric metallocene amide 11c. The $\mathrm{Y}-\mathrm{C}$ and $\mathrm{Lu}-\mathrm{C}$ bond distances lie in the expected range; however, the π-ancillary ligation of the benzoindenyl system shows considerable distortions ($\Delta \mathrm{Ln}-\mathrm{C}_{\mathrm{Cp}}=0.07-0.11$ \AA). The $\mathrm{Y}-\mathrm{N}$ bond distances in $\mathrm{rac-13b}(2.237(4) \AA$) and rac-

[^12]

Figure 9. PLATON ${ }^{80}$ drawing of rac-15e. Atoms are represented by thermal ellipsoids at the 30% level. Except for $\mathrm{H}(1)$ and $\mathrm{H}(2)$, all hydrogen atoms are omitted for clarity. For selected distances and angles see Tables 2 and 3.
$\mathbf{1 5 b}(2.274(3) \AA$) correlate well with the corresponding distances in seven-coordinated yttrium amide complexes, e.g., $\mathrm{Cp}^{*} 2^{-}$ $\mathrm{Y}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right](2.274(5) \AA)$ and $\left\{(R)-\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{Me}_{4} \mathrm{C}_{5}\right)[(-)\right.$-men-thyl- $\left.\left.\mathrm{C}_{5} \mathrm{H}_{3}\right]\right\} \mathrm{Y}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right](2.211(8), 2.281(8) \AA) .{ }^{44,50}$ Remarkably, complex rac-13e features a $\mathrm{Lu}-\mathrm{N}$ bond length of 2.159(4) \AA, which is even shorter than that in the five-coordinate amide precursor (7e, 2.184(3)-2.238(3) A). The shortest $\mathrm{Ln}-\mathrm{N}$ bond reported so far was observed in the polyagostic complex Nd $\left(\mathrm{N} i \mathrm{Pr}_{2}\right)\left[(\mu-\mathrm{Me})\left(\mu-\mathrm{NiPr}_{2}\right) \mathrm{AlMe}_{2}\right]\left[(\mu-\mathrm{Me})_{2} \mathrm{AlMe}_{2}\right](2.168(2) \AA) .{ }^{58 \mathrm{~b}}$

The present geometrical parameters depend on the cation size and the type of ansa-ligand. Complexes rac-13b and rac-13e display bite angles $\Omega\left(61.2(1)^{\circ}, 59.7(2)^{\circ}\right)$ in the range of those of related zirconocene complexes. ${ }^{25 b, c}$ For comparison, the bite angles present in nonlinked cyclopentadienyl and indene derivatives $\mathrm{Cp}^{*}{ }_{2} \mathrm{Y}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right],{ }^{50}\left(\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{Et}\right)_{2} \mathrm{Y}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right],{ }^{51}$ and $[(2,4,7-$ $\left.\left.\mathrm{Me}_{3} \mathrm{C}_{9} \mathrm{H}_{4}\right)_{2} \mathrm{Y}(\mu-\mathrm{H})\right]_{2}{ }^{12 \mathrm{e}}$ are considerably smaller (45.2/47.2/46.6/ $\left.47.8^{\circ}\right) .{ }^{50}$ The molecular structures of the benzoindenyl-derived complexes rac-15b and rac-15e show relatively large bite angles of $66.0(1)^{\circ}$ and $65.6(2)^{\circ}$, respectively, comparable to that of the lanthanum complex 11c. Additionally, small but significant differences of the geometrical parameters β, γ, and Θ (Table 3) are detected for the rac-derivatives of complexes $\mathbf{1 3}$ and $\mathbf{1 5}$. The comparatively slightly decreased (β) and increased (γ, Θ) values in complexes $\mathbf{1 5}$ are probably due to the steric interaction of the silylamide moiety with the 4,5-benzo substituents. Particularly, the latter parameters γ and Θ defining the curvature of the aromatic system away from the silyl groups of the amide (rac-15b, $\gamma=5.5(2) / 4.9(2)^{\circ}$; rac-15e, 5.3(3)/2.3(3)) and the distortion of the silylamide plane $\left(\Theta=7.7(1)^{\circ}, 11.0(7)^{\circ}\right)$, respectively, exceed the values of the related zirconium complex $\left[\mathrm{Me}_{2} \mathrm{Si}(2-\mathrm{Me}-\mathrm{Benz}-\mathrm{Ind})_{2}\right] \mathrm{ZrCl}_{2} .{ }^{25 \mathrm{c}}$

The $\mathrm{Si}-\mathrm{N}-\mathrm{Si}$ angle deformation detected in the $[\mathrm{N}(\mathrm{Si}-$ $\left.\mathrm{HMe}_{2}\right)_{2}$] moiety originates from the strong diagostic interaction; however, there seems to be no clear correlation between the cation size and this intrinsic enlargement of the $\mathrm{Si}-\mathrm{N}-\mathrm{Si}$ angles. The agostic $\mathrm{Ln}-\mathrm{Si}$ and $\mathrm{Ln}-\mathrm{H}$ distances decrease in the order 11c $(\mathrm{La})>\operatorname{rac}-\mathbf{1 3 e}(\mathrm{Lu})>\operatorname{rac}-13 \mathrm{~b}(\mathrm{Y})>\operatorname{rac}-\mathbf{1 5 b}(\mathrm{Y})$ and are in the range of covalent bonds for the latter one. ${ }^{47,48}$ The angle of $153.3(2)^{\circ}$ in $\mathrm{rac}-\mathbf{1 3 b}$ is only slightly smaller than that of 11c, ranging between those of rac-13e (144.0(2) ${ }^{\circ}$) and rac15b $\left(160.1(2)^{\circ}\right)$. This angle expansion appears to be limited mainly by steric interaction between the $\mathrm{SiMe}_{2} \mathrm{H}$ groups and

Figure 10. Disordering model of the silylamide moiety in rac-15e.
the ansa-ligand framework: the closest distance ${ }^{59}$ measured between the amide moiety and the hydrogen atoms of the aromatic systems are almost equal for all of the complexes and just slightly below the sum of the van der Waals radii (11c, $1.96 \AA$; rac-13b, $2.16 \AA$; rac-13e, $2.24 \AA$; rac-15b, $2.10 \AA$; rac-15e, $2.18 \AA$). For example, the bis(indenyl) complexes feature the closest contact between the $\mathrm{C} 3-\mathrm{H}$ hydrogen and the corresponding methylsilyl group. The interaction of the silylamide moiety with the 4,5-benzo substituent is particularly pronounced in complex rac-15e, as revealed by the comparatively long Lu-N bond distance of $2.173(5) \AA$ and a crystallographically disordered SiHMe_{2} moiety (Figure 10). Extended embedding of the smaller lutetium center into the ligand bite sterically disfavors a strong β-SiH diagostic interaction, which would cause an increased interaction of the methyl groups of the silylamide ligand and the $2-\mathrm{Me}$ substituent of the ansasystem. To reduce a sterically stressed, staggered conformation of the SiHMe_{2} groups, rotation about the $\mathrm{Si}-\mathrm{N}$ bond occurs. This peculiar situation is expressed in the extreme values of γ $\left(5.3(3)^{\circ} / 2.3(3)^{\circ}\right)$ and $\theta\left(11.0(7)^{\circ}\right)$ and a comparatively small $\mathrm{Si}-\mathrm{N}-\mathrm{Si}$ angle of $139.3(4)^{\circ}$.

A correlation between $\mathrm{Si}-\mathrm{N}-\mathrm{Si}$ angles and their pertinent $\mathrm{Si}-\mathrm{N}$ distances reveals that the electronic situation in the agostically tensioned bis(dimethylsilyl)amide fragments cannot be described in terms of a simple rehybridization model only (Figure 11).

All of the nonmetallocene bis(dimethylsilyl)amide moieties approximately fit one function (plot A), as derived from a hybridization model. ${ }^{60}$ Although the $\mathrm{Si}-\mathrm{N}-\mathrm{Si}$ angles exhibit enhanced flexibility, the data from both μ_{1} - and μ_{2}-coordinated bis(dimethylsilyl)amide fragments fit considerably well. The angle/distance correlation of the ansa-metallocene silylamide complexes described herein can be fitted by a second, steeper plot B. It is only the disordered SiHMe_{2} moiety of complex rac-15e which significantly deviates from this plot B , even approaching plot A. Apparently, these complexes experience no significant change of hybridization at the nitrogen atom: the $\mathrm{Si}-\mathrm{N}$ distances remain comparable to the educt amide
(59) As hydrogen atom locations on the basis of X-ray data are not very reliable, the closest possible distances were calculated by a simple trigonometric approach, assuming free rotation of the CH_{3} groups around their bond axis. Calculations were done on the basis of the observed $\mathrm{C}-\mathrm{C}$ distances, combined with the following neutron diffraction data for hydrogen atoms: $\mathrm{C}_{\text {alkyl }}-\mathrm{H}=1.113 \AA ; \mathrm{C}_{\text {aromat }}-\mathrm{H}=1.090 \AA ; \angle \mathrm{H}-\mathrm{C}-\mathrm{Si}=107^{\circ}$. The hydrogen atoms of the aromatic systems were placed on the bisector of the $\mathrm{C}-\mathrm{CH}-\mathrm{C}$ angles.
(60) (a) The correlation between the $\mathrm{Si}-\mathrm{N}-\mathrm{Si}$ angles and the pertinent $\mathrm{Si}-\mathrm{N}$ distances was based on 72 data points, taken from 17 compounds (data sources: CSD, refs 15, 16 and this publication). (b) Assuming a linear correlation of the p-orbital content P in the sp^{n} hybrid and the $\mathrm{Si}-\mathrm{N}$ distance $d(d=S(0)+k P)$, from $\cos \alpha=(P-1) / P(\alpha=\mathrm{Si}-\mathrm{N}-\mathrm{Si}$ angle) the correlation function $d=S(0)+k /(1-\cos \alpha)$ can be obtained. This function was fitted to the data points by least-squares refinement. The resulting parameters are, for the metallocene silylamides, $S(0)=1.440$ and $k=0.425$ $(\mathrm{rms}=0.0132)$ and, for unperturbated monoagostic silylamides, $S(0)=$ $1.300, k=0.881(\mathrm{rms}=0.0154)$. For $180^{\circ}>\alpha>90^{\circ}$, theoretical $\mathrm{Si}-\mathrm{N}$ bond distances in the range $1.653<d<1.866 \AA$ and $1.530<d<2.179$ \AA can be derived for metallocene silylamide complexes and for unperturbated silylamide complexes, respectively.

Figure 11. Correlation between $\mathrm{Si}-\mathrm{N}-\mathrm{Si}$ angles and their pertinent $\mathrm{Si}-\mathrm{N}$ distances in bis(dimethylsilyl)amide complexes. The correlation functions ${ }^{57 \mathrm{~b}}$ were derived from a hybridization model. Data points in parentheses result from disordered bis(dimethylsilyl)amide moieties and were not taken into account for fitting the functions.
complexes ($7 \mathbf{a}-\mathbf{e}$) when the $\mathrm{Si}-\mathrm{N}-\mathrm{Si}$ angle is enlarged. Therefore, it can be assumed that the observed $\mathrm{Si}-\mathrm{H}$ diagostic interaction not only is due to an attractive interaction between the silicon hydrogen atoms and the metal center but also affects the electron distribution of the entire silylamide ligand.

So far, the question remained unsolved of why these ansametallocene complexes do not show the usually observed agostic interaction of one silyl group of the amide ligand (Figure $12 b)^{44,50,51,57}$ but display this unique symmetric approach of both SiH moieties (Figure 12a). ${ }^{58,61,62}$ According to theoretical calculations, ${ }^{22}$ the present agostic interaction is mainly ionic, taking place via the attraction of the negative partial charge of the SiH hydrogen atoms and the Lewis acidic $\mathrm{Ln}(\mathrm{III})$ metal centers. However, covalent bonding contributions cannot be neglected, as revealed by the peculiar behavior of the SiH group in spectroscopic examinations. Such a diagostic interaction leads to a significant decrease of the molecule's total energy, with the $\mathrm{Si}-\mathrm{N}-\mathrm{Si}$ angle deformation energy of $0.1-1.0 \mathrm{kcal} / \mathrm{mol}$ being compensated by the β - SiH diagostic interaction, which can be estimated as $6.4 \mathrm{kcal} / \mathrm{mol} .^{22}$

Kinetic and Thermodynamic Limitations of the Extended Silylamide Route

General Considerations. The synthetic yields of the ansalanthanidocene complexes presented in Scheme 1 markedly depend on the nature of the chelating ligand. For example, the low reactivity of the 2,4 -substituted bis(indene) $\mathbf{4}$ is in contrast to the high crystallized racemic yields obtained for the similarly bulky bis(benzoindene) 5 . In the following, both thermodynamic and kinetic limitations of this extended silylamide route are addressed on the basis of $\mathrm{p} K_{\mathrm{a}}$ and steric factors. Amine elimination reactions as described in Schemes 1 and 2 represent

[^13]a)

b)

Figure 12. Symmetric (a) and asymmetric (b) coordination mode of the silylamide moiety.

Scheme 3. Reaction Mechanism Proposed for the Formation of ansa-Metallocene Amide Complex 11b via the Extended Silylamide Route Based on the Isolated Intermediates 17b and 14b

Brönsted-type acid-base reactions, the approach of the protic substrate and subsequent proton transfer to the amide nitrogen being the key steps of the reaction. Hence, the thermodynamics of the exchange reactions can be best understood by determining the $\mathrm{p} K_{\mathrm{a}}$ values of the ligands involved. Factors such as steric oversaturation/unsaturation are known to govern the feasibility of ligand-exchange reactions in rare earth chemistry. ${ }^{16}$ The isolation of the reaction intermediates $\mathbf{1 4 b}$ and $\mathbf{1 7 b}$ substantiates the presence of kinetically controlled exchange reactions under the prevailing conditions and proposes a reaction mechanism such as that depicted in Scheme 3. Unsuccessful or incomplete exchange reactions utilizing the sterically more crowded $\mathrm{Ln}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{3}$ complexes reinforce this mechanistic scenario.

The exchange reaction is initiated by THF dissociation from the amide precursor, affording, e.g., the mono-THF adduct Ln$\left[\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right]_{3}(\mathrm{THF})$ (17). The yttrium derivative 17b was obtained independently by refluxing $\mathbf{7 b}$ in toluene and characterized spectroscopically and by elemental analysis. The unoccupied coordination site in complex 17b directs approach and coordination of one "diene" moiety of the linked cyclopentadienyl ligands to give intermediate $\mathbf{I}_{\mathbf{1}}$. After transfer of the "acidic" proton onto the amide nitrogen, dissociation of the protonated silylamine and of the second THF molecule results in a reaction intermediate $\mathbf{I}_{\mathbf{2}}$ comparable to complex $\mathbf{1 4 b}$. The final ligand association proceeds via the second proton transfer, followed by displacement of the amine by the chelating ligand. On the basis of this mechanism, two key limitations of the exchange reactions are evident. First, the presence of the dissociated THF donor molecule should slow the reactivity, as it can be coordinated on each step of product formation and thus block coordination sites. Second, the steric bulk of the approaching protic molecule restricts the ligand orientation for the following proton transfer.

Figure 13. Sterically hindered (above) and unhindered (below) approach of 2,4-substituted ansa-indene molecules 4 and 5, respectively, at complex $\mathrm{Ln}\left[\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right]_{3}(\mathrm{THF})$ on the basis of MM2 calculations.

Kinetically Controlled Ligand Approach. A qualitative description of the implications of steric hindrance for this specialized silylamine elimination could be gained on the basis of MM2 force field calculations. According to the mechanism proposed above (Scheme 3), ligand approach at the mono-THF adduct 17b was chosen as a model reaction. The calculated geometry of reaction intermediate 17b is in good accordance with that of the mono-dimethylimidazol-2-ylidene adduct $\mathrm{Y}\left[\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right]_{3}\left(\mathrm{Me}_{2} \mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}\right)$ reported recently. ${ }^{63}$

Approach of the differently substituted linked bis(indenes) 4 and 5 was forced by a fixed $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ distance of $3.20 \AA .{ }^{64}$ The resulting structure of reaction intermediate \mathbf{I}_{1} clearly shows that steric constraints hamper the proton exchange process (Figure 13). The pincers formed by the methyl and phenyl substituents in the 2 - and 4-positions are too small to match the bulk of the bis(dimethylsilyl)amide ligand. In contrast, the 4,5-benzo-substituted bis(indene) seems to perfectly fit into the void which is formed by the amide ligands of 17b. These findings are in good accordance with the synthetic results, which show a high crystallized yield for complexes $\mathbf{1 5}$ and no or incomplete ligand exchange for complexes 14.
$\mathbf{p} K_{\mathbf{a}}$ Value Estimation. Many $\mathrm{p} K_{\mathrm{a}}$ value estimations have been carried out for amines and hydrocarbons which resulted in a number of different $\mathrm{p} K_{\mathrm{a}}$ scales, depending on the applied solvent, the counterions, and the method of measurement. ${ }^{65-67}$ The method introduced by Fraser et al. ${ }^{65}$ comprises an acidity scale which seemed to be well suited to evaluate our extended silylamide route. According to these studies, ${ }^{13}$ C NMR spectroscopy is used to measure the relative concentrations of all four species of a deprotonation/reprotonation equilibrium, as shown in Scheme 4.

[^14]Scheme 4. $\mathrm{p} K_{\mathrm{a}}$ Value Estimation by the Method of Fraser et al. ${ }^{65}$

However, application of this method to silyl-bridged bis(indene) and bis(fluorene) systems is hampered by different effects. Donor solvent-dependent equilibria between solvent separated (ssip) and contact ion pairs (cip) (a), ${ }^{68}$ different solvation and coordination isomers of the dilithium salts of chelating ligands present in solution (b), ${ }^{69}$ disproportionation equilibria between mono- and bis-deprotonated species with the neutral ligand (c), and 1,5 -sigmatropic shifts of the silyl group (d) ${ }^{70}$ contribute to signal broadening and/or signal multiplicities and hence often result in noninterpretable spectra (Scheme 5).

To minimize these aggravating factors, monosilylated indene and fluorene systems 8a-10a were used for the $\mathrm{p} K_{\mathrm{a}}$ value determinations. The new compounds were synthesized by silylation of the corresponding lithium salts with dimethylchlorosilane as shown in Scheme 6.71 A further simplification of the system could be achieved by recording the spectra in a solvent mixture of $\mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{THF}-d_{8}(20 / 1)$, which resembles the conditions of the extended silylamide route and counteracts ssip formation. Silyl group shift reactions proved to be negligible: according to the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 a}$, in addition to the thermodynamically favored 3-(dimethylsilyl)indene (94\%) only a small amount of the 1 -substituted derivative (6%) formed. Such small amounts are below the accuracy of the estimation of ${ }^{13} \mathrm{C}$ NMR signal intensities and therefore hardly affect the determination of the $\mathrm{p} K_{\mathrm{a}}$ values. The $\mathrm{p} K_{\mathrm{a}}$ values estimated by this modification of the method of Fraser et al. are presented in Table 4.

[^15]Scheme 5. Problems Associated with $\mathrm{p} K_{\mathrm{a}}$ Value
Estimations: (a) ssip/cip Equilibrium, (b) Solvation and Coordination Isomers of the Li^{+}, (c) Mono- and Bis-deprotonation of the ansa-Ligand, and (d) Migration of the Silyl Group

Scheme 6. Preparation of Silylated Indene and Fluorene Model Compounds for the $\mathrm{p} K_{\mathrm{a}}$ Value Estimation

Silylamines display a relatively low basicity attributable to $\mathrm{d} \pi-\mathrm{p} \pi$ interactions between the vacant d -orbitals of the silicon atoms and the lone pairs of the amide nitrogen. ${ }^{72}$ For example, the $\mathrm{p} K_{\mathrm{a}}$ value of the bis(trimethylsilyl)amine was determined as 25.8 in THF. ${ }^{65 \mathrm{~b}}$ According to our estimations, the $\mathrm{p} K_{\mathrm{a}}$ of bis(dimethylsilyl)amine is as low as $22.8 .^{73}$ Three differently performed acidity measurements of fluorene (runs 2, 3, and 5) demonstrate the accuracy of this method. Variation of the reference acids, the $\mathrm{p} K_{\mathrm{a}}$ values of which were determined first (runs 1 and 4), resulted in $\mathrm{p} K_{\mathrm{a}}$ values varying within 0.1 unit. Generally, the present values are about 1.5 units higher than the ones obtained by other methods in DMSO. The presence of a silyl group in the 3-position decreases the $\mathrm{p} K_{\mathrm{a}}$ value by 1.5 and 1.8 units for the indenyl derivatives $\mathbf{8 a}$ and $9 \mathbf{a}$, respectively.

[^16]Table 4. $\mathrm{p} K_{\mathrm{a}}$ Values According to the Modified Method of Fraser

run	acid_{1}	ref. $\operatorname{acid}_{2}\left(\mathrm{p} K_{2}\right)$	$K_{\text {eq }}$	$-\log K$	$\mathrm{p} K_{1}$	lit. data
1	$\mathrm{HN}\left(\mathrm{SiHMe}_{2}\right)_{2}$	$\mathrm{HN}\left(\mathrm{SiMe}_{3}\right)_{2}(25.8)^{a)}$	1.1×10^{-3}	3.0	22.8	
2	fluorene	$\mathrm{HN}\left(\mathrm{SiMe}_{3}\right)_{2}(25.8)^{a}$	0.020	1.7	24.2	$24.4{ }^{\text {a }} / 22.6^{\text {b }}$
3	fluorene	$\mathrm{HN}\left(\mathrm{SiHMe}_{2}\right)_{2}(22.8)$	16	-1.2	24.0	$24.4{ }^{a} / 22.6^{\text {b }}$
4	indene	$\mathrm{HN}\left(\mathrm{SiHMe}_{2}\right)_{2}$ (22.8)	0.080	1.1	21.7	$20.1{ }^{\text {b }}$
5	fluorene	indene (21.7)	200	-2.3	24.0	$24.4{ }^{a} / 22.6^{\text {b }}$
6	SiHMe ${ }_{2}$-Fluo (10a)	indene (21.7)	25	-1.4	23.1	$21.7{ }^{\text {b,c }}$
7	3-(SiHMe 2)-Ind (8a)	indene (21.7)	0.032	1.5	20.2	
8	2-Me-Ind	indene (21.7)	30	-1.5	23.1	
9	3-(SiHMe_{2})-2-Me-Ind (9a)	indene (21.7)	0.050	0.3	21.4	

${ }^{a}$ Reference 65b. ${ }^{b}$ In DMSO, refs 70e,f. ${ }^{c}$ Trimethylsilyl derivative in DMSO.

This effect is less pronounced for the ligand 9-(SiMe_{2})fluorene $\left(\Delta \mathrm{p} K_{\mathrm{a}}=0.9\right)$. As expected, a methyl group in the 2-position increases the basicity of the indene molecule by 1.5 units.

These results show that the low yields isolated for the bis(indenyl) complexes rac-13a and 14b are mainly due to sterically disfavored exchange reactions (kinetic control). In contrast, the synthesis of the silyl-linked bis(fluorenyl) complexes is additionally hampered by the low $\mathrm{p} K_{\mathrm{a}}$ value of the bis(fluorene) precursors. Hence, an efficient preparation of fluorenyl-derived lanthanidocenes will require alternative amide precursors. For comparison, the $\mathrm{p} K_{\mathrm{a}}$ criterion is of minor importance in related zirconocene chemistry, ${ }^{19}$ where amine elimination reactions are routinely accomplished by utilizing more basic dialkylamide ligands (e.g, $\left.\mathrm{p} K_{\mathrm{a}}\left(\mathrm{HNiPr}_{2}\right)=36.0\right) .{ }^{66 \mathrm{a}}$

Conclusion

A specialized silylamine elimination reaction gives access to a wide range of achiral and C_{2}-symmetric metallocene complexes of the rare earth elements, including the first Brintzinger-type lanthanide complexes. Utilization of tailormade synthetic precursors such as $\operatorname{Ln}\left[\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right]_{3}(\mathrm{THF})_{x}$ seems to be the proper strategy to achieve exchange reactions with bulky, chelating molecules such as linked and substituted indene derivatives. The commercially available, sterically more encumbered standard systems $\operatorname{Ln}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{3}$, however, do not undergo these exchange reactions. Not only does the SiH moiety of the $\left[\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right]$ ligands constitute an excellent spectroscopic probe to study these ligand-exchange reactions, but the steric and electronic peculiarities of the chelating ancillary ligands also imply a remarkable bis(dimethylsilyl)amide bonding. This bonding features a two-fold, strong $\mathrm{Si}-\mathrm{H}$ metal coordination which is rigid in solution within a temperature range from -90 to $130{ }^{\circ} \mathrm{C}$. This novel β-SiH diagostic interaction forces unprecedented large $\mathrm{Si}-\mathrm{N}-\mathrm{Si}$ angles and elongated $\mathrm{Si}-\mathrm{H}$ bond distances, as revealed by spectroscopic and structural investigations. Such interactions resemble the early step of the oxidative addition of an $\mathrm{Si}-\mathrm{H}$ bond to a metal center. Close $\mathrm{M} \cdots \mathrm{SiH}$ interactions ($M=$ rare earth metal cation) are assumed mechanistic intermediates, e.g., in the dehydrogenative polymerization of hydrosilanes by lanthanidocene complexes. ${ }^{74}$ The kinetic and thermodynamic limitations of this specialized silylamine elimination reaction could be rationalized on the basis of steric considerations and $\mathrm{p} K_{\mathrm{a}}$ value determinations. To widen the scope of this synthetic route, i.e., better to cope with the prevailing synthetic limitations, we are currently evaluating additional tailor-made lanthanide amide precursors. Preliminary catalytic examinations clearly indicate an intriguing potential of this new generation of lanthanidocene complexes in both fine chemical and polymer synthesis. ${ }^{75}$

[^17]
Experimental Section

General Considerations. All air- and moisture-sensitive compounds were manipulated with the rigorous exclusion of oxygen and moisture in flame-dried $\left(180^{\circ} \mathrm{C}\right)$ Schlenk-type glassware using the standard highvacuum technique or an argon-filled glovebox (MBraun) with $\mathrm{O}_{2} / \mathrm{H}_{2} \mathrm{O}$ $<1 \mathrm{ppm}$. The solvents were predried, distilled from Na / K alloy, and stored in a glovebox. Deuterated solvents were obtained from Deutero GmbH and degassed and dried over Na / K alloy.

Fluorene and 2-methylindene were purchased from Aldrich and used as received. Indene $(90 \%$, Aldrich) was distilled and stored under nitrogen at $-35^{\circ} \mathrm{C}$. Dimethyldichlorosilane and dimethylchlorosilane (Aldrich) were freshly distilled from potassium carbonate prior to use. $\operatorname{Bis}\left(2,3,4,5\right.$-tetramethylcyclopenta-2,4-dien-1-yl)dimethylsilane $\left(\mathrm{Me}_{2}-\right.$ $\left.\mathrm{Si}\left(\mathrm{Cp}^{\prime \prime} \mathrm{H}\right)_{2}, \mathbf{1}\right)^{24}$ and bis(fluoren-9-yl)dimethylsilane $\left(\mathrm{Me}_{2} \mathrm{Si}(\mathrm{FluoH})_{2}, \mathbf{6}\right)^{26}$ were synthesized according to published procedures by reacting the corresponding lithiated hydrocarbons with dimethyldichlorosilane. Lithiation of the hydrocarbons indene, 2-methylindene, fluorene, and the silylamines $1,1,1,3,3,3$,-hexamethyldisilazane and 1,1,3,3,-tetramethyldisilazane was carried out by adding n-butyllithium (1.6 M solution in hexane) to an n-hexane solution at $-78^{\circ} \mathrm{C}$. Tetrahydrofurantris[bis(dimethylsilyl)amido]scandium(III) (7a) and the trans-bis(tetrahydrofuran)tris[bis(dimethylsilyl)amido]lanthanoid(III) precursors 7b-e were prepared as described recently. ${ }^{15} \mathrm{Y}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{3}$ was prepared from $\mathrm{YCl}_{3}(\mathrm{THF})_{3}$ and $\mathrm{K}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]$ and sublimed prior to use. 2,2-Bis(inden-1-yl)propane $\left(\mathrm{Me}_{2} \mathrm{C}(\mathrm{IndH})_{2}, \mathbf{2}\right)$ and bis(2-methyl-4-phenylinden-1-yl)dimethylsilane $\left(\mathrm{Me}_{2} \mathrm{Si}(2-\mathrm{Me}-4-\mathrm{Ph}-\mathrm{IndH})_{2}, 4\right)$ were donated by Hoechst AG. Bis(2-methylinden-1-yl)dimethylsilane $\left(\mathrm{Me}_{2} \mathrm{Si}(2-\mathrm{Me}-\mathrm{IndH})_{2}, 3\right.$) and bis(2-methyl-4,5-benzoinden-1-yl)dimethylsilane ($\mathrm{Me}_{2} \mathrm{Si}$ (2-Me-Benz$\operatorname{IndH})_{2}$, 5) were donated by Peroxid GmbH (Laporte). For the preparation of these ligands see ref 25 .

NMR spectra were recorded either on a Bruker DPX-400 (FT, 400 $\mathrm{MHz}{ }^{1} \mathrm{H} ; 100 \mathrm{MHz}{ }^{13} \mathrm{C}$) or on a JEOL JNM-GX-400 (FT, 400 MHz $\left.{ }^{1} \mathrm{H} ; 100 \mathrm{MHz}{ }^{13} \mathrm{C} ; 79.5 \mathrm{MHz}{ }^{29} \mathrm{Si}\right)$ spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ shifts are referenced to internal solvent resonances and reported relative to TMS. The NOE experiment was recorded on the Bruker spectrometer. ${ }^{89} \mathrm{Y}$ NMR experiments were performed on the JEOL spectrometer, which was equipped with a broad-band $10-\mathrm{mm}$ probe $\left(19.48 \mathrm{MHz}{ }^{89} \mathrm{Y}, 3.0\right.$ $\mathrm{M} \mathrm{YCl}_{3}$ in $\mathrm{D}_{2} \mathrm{O}$ as a standard, sample concentration 0.26 M in a $6: 1$ mixture of toluene $/ \mathrm{C}_{6} \mathrm{D}_{6}$; acquisition parameters, pulse width 10 ms , pulse delay $20 \mathrm{~s}, 3000$ scans). IR spectra were recorded on a PerkinElmer 1650-FTIR spectrometer as Nujol mulls. Mass spectra (CI; ionization agent, isobutene) were obtained on a Finnigan MAT-90 spectrometer. Elemental analyses were performed in the microanalytical laboratory of the institute.
$\mathbf{p} K_{\mathrm{a}}$ Value Measurements. The $\mathrm{p} K_{\mathrm{a}}$ values of tetramethyldisilazane, inden-1-yldimethylsilane, (2-methylinden-1-yl)dimethylsilane, and flouren-1-yldimethylsilane were determined by a slight modification of the procedure described by Fraser et al. ${ }^{65}$ In a glovebox, the lithiated reference acid (lithium bis(trimethylsilyl)amide, lithium bis(dimethylsilyl)amide, indenyllithium, fluorenyllithium) was mixed with an equimolar amount of the protonated acid and 0.33 equiv of hexamethylbenzene as an internal standard. The mixture was cooled to -35 ${ }^{\circ} \mathrm{C}$ and dissolved in a $20: 1$ mixture of $\mathrm{C}_{6} \mathrm{D}_{6}$ and THF- d_{8} to give a 0.1 M solution. After 30 min the solution was transferred into a $10-\mathrm{mm}$
(75) Anwander R.; Görlitzer, H. W.; Gerstberger, G.; Eppinger, J., unpublished results.
sealable NMR tube, allowed to warm to ambient temperature, and placed in the Bruker spectrometer operating at $25^{\circ} \mathrm{C} .{ }^{13} \mathrm{C}$ NMR spectra were accumulated immediately using a small pulse angle $\left(30^{\circ}\right)$ and a 2-s repetition rate (a repetition rate of 4 s did not affect the integral ratios). Influences such as differential NOEs were eliminated by using an empirically derived correction factor. This factor was determined by measuring the integrals of the protonated and lithiated compounds relative to a certain amount of hexamethylbenzene as an internal standard. In accordance with Fraser et al., ${ }^{65}$ we estimated the accuracy of K, derived from the equilibrium concentrations of all species present in the solution, to be $\pm 30 \%$, i.e., an uncertainty of $\Delta \mathrm{p} K_{\mathrm{a}}$ of $\pm 0.2 \mathrm{p} K_{\mathrm{a}}$ unit or less. The ${ }^{13} \mathrm{C}$ NMR shifts were ($400 \mathrm{MHz}, 25^{\circ} \mathrm{C}$) as follow: $\mathrm{HN}\left(\mathrm{SiMe}_{3}\right)_{2}, \delta 4.19 ; \mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}, \delta 3.17 ; \mathrm{HN}\left(\mathrm{SiHMe}_{2}\right)_{2}, \delta 1.54 ; \mathrm{LiN}-$ $\left(\mathrm{SiHMe}_{2}\right)_{2}, \delta 2.62$; IndH, $\delta 144.7,143.5,133.8,132.1,126.1,124.5$, $123.6,120.9,39.1$; Li(Ind), $\delta 128.4,120.5,115.7,115.4,91.9$; $2-\mathrm{Me}-$ IndH, $\delta 146.7,145.4,145.0,126.0,125.5,125.3,122.8,120.3,46.8$, 16.73; Li(2-Me-Ind), $\delta 128.2,125.7,119.4,115.5,92.2,14.83$; FluoH, $\delta 142.2,141.0,127.1,125.8,124.2,120.4,40.13 ; \mathrm{Li}($ Fluo), $\delta 136.5$, $121.8,120.1,119.3,116.6,109.5,80.4 ; \mathrm{C}_{6} \mathrm{Me}_{6}, \delta 131.71,16.86$.

General Procedure for the Silylation of Indenyl and Fluorenyl Systems. Over a period of $30 \mathrm{~min}, 1.0$ equiv of n-butyllithium $(1.6 \mathrm{M}$ solution in hexane) was added dropwise to a solution of the corresponding aromatic hydrocarbon in THF ($5 \mathrm{~mL} / \mathrm{mmol}$ of the reactants) at $-78^{\circ} \mathrm{C}$. The cold reaction mixture was stirred for 2 h . Then 1.1 equiv of dimethylchlorosilane in THF ($5 \mathrm{~mL} / \mathrm{mmol}$) was added dropwise at $-78^{\circ} \mathrm{C}$, and the mixture was stirred at this temperature for 1 h . The reaction mixture was allowed to warm to ambient temperature and stirred for another 12 h before the solvent was removed in vacuo. The residue was suspended in n-hexane ($10 \mathrm{~mL} / \mathrm{mmol}$ of the desired product) and refluxed for 30 min . After the hexane suspension was cooled to ambient temperature, LiCl was filtered off, and the residue was washed a second time with the same amount of n-hexane. The pure product was obtained by removing the solvent from the combined organic phases.

Dimethylsilylindene (8a). Following the procedure described above, indene ($1.564 \mathrm{~g}, 18.17 \mathrm{mmol}$), n-butyllithium (1.60 M in hexane, 11.4 $\mathrm{mL}, 18.2 \mathrm{mmol})$, and dimethylchlorosilane ($1.89 \mathrm{~g}, 20.0 \mathrm{mmol}$) yielded $8 \mathbf{a}(2.587 \mathrm{~g}, 14.84 \mathrm{mmol}, 82 \%)$ as a pale yellow oil. IR (neat, cm^{-1}): $3115 \mathrm{w}, 3065 \mathrm{~m}, 3052 \mathrm{~m}, 3015 \mathrm{w}, 2959 \mathrm{~m}, 2901 \mathrm{w}, 2120$ vs $(v(\mathrm{Si}-$ H)), 1938 w, 1900 w, 1833 w, 1789 w, 1722 w, 1626 w, 1605 w, 1580 w, $1536 \mathrm{w}, 1459 \mathrm{~m}, 1450 \mathrm{~s}, 1422 \mathrm{w}, 1360 \mathrm{w}, 1311 \mathrm{w}, 1250 \mathrm{~s}, 1220 \mathrm{~m}$, $1190 \mathrm{~m}, 1112 \mathrm{w}, 1029 \mathrm{vs}, 980 \mathrm{~m}, 934 \mathrm{~m}, 886 \mathrm{vs}, 860 \mathrm{~s}, 837 \mathrm{~s}, 801 \mathrm{~s}$, $766 \mathrm{vs}, 728 \mathrm{~m}, 716 \mathrm{~s}, 675 \mathrm{~m}, 644 \mathrm{~m}, 632 \mathrm{~m}, 600 \mathrm{w}, 564 \mathrm{~m}, 540 \mathrm{~m}$, $455 \mathrm{~s}, 420 \mathrm{w} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}$): (a) major isomer (3-dimethylsilylindene, $94 \mathrm{~mol} \%): \delta 7.42\left(\mathrm{dd},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.7 \mathrm{~Hz}\right.$, ${ }^{4} J(\mathrm{H}, \mathrm{H})=0.9 \mathrm{~Hz}, 1 \mathrm{H}$, indenyl-H), $7.40\left(\mathrm{dd},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.7 \mathrm{~Hz},{ }^{4} J(\mathrm{H}, \mathrm{H})\right.$ $=1.0 \mathrm{~Hz}, 1 \mathrm{H}$, indenyl-H), 7.21 (" t ", ${ }^{3} J(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz}, 1 \mathrm{H}$, indenyl$\mathrm{H}), 7.15$ ("t", ${ }^{3} J(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}, 1 \mathrm{H}$, indenyl-H), $6.83\left(\mathrm{dd},{ }^{3} J(\mathrm{H}, \mathrm{H})=\right.$ $5.2 \mathrm{~Hz},{ }^{4} J(\mathrm{H}, \mathrm{H})=0.7 \mathrm{~Hz}, 1 \mathrm{H}$, indenyl-H$), 6.43\left(\mathrm{dd},{ }^{3} J(\mathrm{H}, \mathrm{H})=5.1\right.$ $\mathrm{Hz},{ }^{3} J(\mathrm{H}, \mathrm{H})=1.9 \mathrm{~Hz}, 1 \mathrm{H}$, indenyl-H), $4.26\left(\mathrm{dsept},{ }^{1} J(\mathrm{Si}, \mathrm{H})=189\right.$ $\left.\mathrm{Hz},{ }^{3} J(\mathrm{H}, \mathrm{H})=3.4 \mathrm{~Hz},{ }^{3} J(\mathrm{H}, \mathrm{H})=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SiH}\right), 3.48\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})\right.$ $=1.6 \mathrm{~Hz}, 1 \mathrm{H}$, indenyl-H), $-0.17\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=3.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{HSi}-\right.$ $\left.\left(\mathrm{CH}_{3}\right)_{2}(\mathrm{I})\right),-0.27\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=3.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{HSi}\left(\mathrm{CH}_{3}\right)_{2}(\mathrm{II})\right) ;(\mathrm{b})$ minor isomer (1-dimethylsilylindene, $6 \mathrm{~mol} \%$): $\delta 7.51$ (dd, 1 H , indenylH), 7.28 ("t", 1 H , indenyl-H), 7.10 (" t ", 1 H , indenyl-H), 6.72 (dd, 1 H , indenyl-H), 6.23 (dd, 1 H , indenyl-H), 4.40 (sept, $1 \mathrm{H}, \mathrm{SiH}$), 3.03 $\left(\mathrm{t}, 1 \mathrm{H}\right.$, indenyl-H), $0.13\left(\mathrm{~d}, 6 \mathrm{H}, \mathrm{HSi}\left(\mathrm{CH}_{3}\right)_{2}(\mathrm{I})\right),-0.10(\mathrm{~d}, 6 \mathrm{H}, \mathrm{HSi}-$ $\left.\left(\mathrm{CH}_{3}\right)_{2}(\mathrm{II})\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100.5 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right): \delta 145.3,144.5$, 135.0, 129.8, 125.5, 124.4, 123.0, 121.5, (s, indenyl-C), 43.80 (s, $\alpha-\mathrm{C}$), $-5.25\left(\mathrm{~s}, \mathrm{HSi}\left(\mathrm{CH}_{3}\right)_{2}(\mathrm{I})\right),-6.46\left(\mathrm{~s}, \mathrm{HSi}\left(\mathrm{CH}_{3}\right)_{2}(\mathrm{II})\right) . \mathrm{MS}(\mathrm{EI}): \mathrm{m} / \mathrm{z}$ (relative intensity) 174 (21) $\left[\mathrm{M}^{+}\right], 159$ (34) $\left.\left[\mathrm{M}^{+}-\mathrm{CH}_{3}\right)\right], 115$ (17) $\left[\mathrm{M}^{+}-\mathrm{SiHMe}_{2}\right]$, 59 (100) [SiHMe2 ${ }^{+}$]. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{Si}: \mathrm{C}$, 75.71 ; H, 8.09. Found: C, 76.26; H, 8.20.

3-Dimethylsilyl-2-methylindene (9a). Following the procedure described above, 2-methylindene ($1.175 \mathrm{~g}, 9.03 \mathrm{mmol}$), n-butyllithium (1.60 M in hexane, $5.6 \mathrm{~mL}, 9.0 \mathrm{mmol}$), and dimethylchlorosilane (0.946 $\mathrm{g}, 10.0 \mathrm{mmol})$ yielded $9 \mathrm{a}(1.460 \mathrm{mg}, 7.75 \mathrm{mmol}, 86 \%)$ as a pale yellow oil. IR (neat, cm^{-1}): $3063 \mathrm{~s}, 3052 \mathrm{~s}, 3013 \mathrm{~m}, 2960 \mathrm{~s}, 2908 \mathrm{~s}, 2855 \mathrm{w}$, $2734 \mathrm{w}, 2120$ vs $(v(\mathrm{Si}-\mathrm{H})), 1932 \mathrm{w}, 1896 \mathrm{w}, 1859 \mathrm{w}, 1794 \mathrm{w}, 1680$ w, $1605 \mathrm{w}, 1593 \mathrm{~m}, 1567 \mathrm{w}, 1457 \mathrm{~s}, 1447 \mathrm{~s}, 1379 \mathrm{w}, 1300 \mathrm{~m}, 1250 \mathrm{~s}$, $1220 \mathrm{~m}, 1194 \mathrm{~m}, 1153 \mathrm{w}, 1120 \mathrm{w}, 1100 \mathrm{w}, 1051 \mathrm{~s}, 1012 \mathrm{~s}, 930 \mathrm{~m}$,

889 vs, 836 vs, $801 \mathrm{~s}, 782 \mathrm{~s}, 750 \mathrm{vs}, 730 \mathrm{~m}, 714 \mathrm{~s}, 683 \mathrm{w}, 647 \mathrm{~s}, 630$ $\mathrm{m}, 602 \mathrm{~m}, 566 \mathrm{~m}, 477 \mathrm{~m}, 455 \mathrm{~s}, 424 \mathrm{w} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25$ $\left.{ }^{\circ} \mathrm{C}\right): \delta 7.34\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.7 \mathrm{~Hz}, 1 \mathrm{H}\right.$, indenyl-H), $7.32\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})\right.$ $=7.3 \mathrm{~Hz}, 1 \mathrm{H}$, indenyl-H), 7.21 (" t ", ${ }^{3} J(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz}, 1 \mathrm{H}$, indenyl$\mathrm{H}), 7.11$ ("dt", ${ }^{3} J(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}, 1 \mathrm{H},{ }^{4} J(\mathrm{H}, \mathrm{H})=0.7 \mathrm{~Hz}$, indenyl-H), $6.46\left(\mathrm{~s}, 1 \mathrm{H}\right.$, indenyl-H), $4.25\left(\right.$ dsept, ${ }^{1} J(\mathrm{Si}, \mathrm{H})=190 \mathrm{~Hz},{ }^{3} J(\mathrm{H}, \mathrm{H})=$ $\left.3.6 \mathrm{~Hz},{ }^{3} J(\mathrm{H}, \mathrm{H})=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SiH}\right), 3.14\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=1.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, indenyl-H), $2.00\left(\mathrm{~s}, 3 \mathrm{H}\right.$, indenyl $\left.-\mathrm{CH}_{3}\right),-0.08\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=3.6 \mathrm{~Hz}\right.$, $\left.6 \mathrm{H}, \mathrm{HSi}\left(\mathrm{CH}_{3}\right)_{2}(\mathrm{I})\right),-0.35\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=3.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{HSi}\left(\mathrm{CH}_{3}\right)_{2}(\mathrm{II})\right)$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100.5 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}\right): \delta 146.7,145.4,145.0,126.0$, $125.5,123.3,122.8,120.3$, (s , indenyl-C), 46.78 ($\mathrm{s}, \alpha-\mathrm{C}$), 16.73 (s, indenyl- $\left.\mathrm{CH}_{3}\right),-6.03\left(\mathrm{~s}, \mathrm{HSi}\left(\mathrm{CH}_{3}\right)_{2}(\mathrm{I})\right),-7.19\left(\mathrm{~s}, \mathrm{HSi}\left(\mathrm{CH}_{3}\right)_{2}(\mathrm{II})\right)$. MS (EI): m / z (relative intensity) $\left.188(33)\left[\mathrm{M}^{+}\right], 173(20)\left[\mathrm{M}^{+}-\mathrm{CH}_{3}\right)\right]$, 129 (45) $\left[\mathrm{M}^{+}-\mathrm{SiH}\left(\mathrm{CH}_{3}\right)_{2}\right], 59(100)\left[\mathrm{SiH}\left(\mathrm{CH}_{3}\right)_{2}{ }^{+}\right]$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{Si}: \mathrm{C}, 76.52 ; \mathrm{H}, 8.56$. Found: C, $75.16 ; \mathrm{H}, 8.84$.

9-(Dimethylsilyl)fluorene (10a). Following the procedure described above, fluorene $(1.662 \mathrm{~g}, 10.00 \mathrm{mmol})$, n-butyllithium $(1.60 \mathrm{M}$ in hexane, $6.25 \mathrm{~mL}, 10.0 \mathrm{mmol})$, and dimethylchlorosilane ($1.04 \mathrm{~g}, 11.0$ mmol) yielded 10a ($1.963 \mathrm{~g}, 8.75 \mathrm{mmol}, 87 \%$) as a white powder. IR (Nujol, cm^{-1}): $3065 \mathrm{w}, 2926 \mathrm{vs}, 2853 \mathrm{vs}, 2724 \mathrm{~s}, 2122 \mathrm{~s}(v(\mathrm{Si}-\mathrm{H}))$, 1938 w, $1901 \mathrm{w}, 1795 \mathrm{w}, 1615 \mathrm{w}, 1576 \mathrm{w}, 1460 \mathrm{~s}, 1402 \mathrm{w}, 1377 \mathrm{~s}$, 1310 w, 1298 w, 1250 m, 1186 m, 1098 w, $1055 \mathrm{~m}, 1028 \mathrm{w}, 1005 \mathrm{w}$, 973 w, 952 w, 933 w, 885 s, 860 w, 838 w, 795 w, 738 vs, 694 w, 646 w, $621 \mathrm{~m}, 486 \mathrm{w}, 426 \mathrm{w}, 411 \mathrm{~m} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}$): $\delta 7.74\left(\mathrm{dd},{ }^{3} J(\mathrm{H}, \mathrm{H})=6.6 \mathrm{~Hz},{ }^{4} J(\mathrm{H}, \mathrm{H})=1.5 \mathrm{~Hz}, 2 \mathrm{H}\right.$, fluorenyl- H$)$, $7.42\left(\mathrm{dd},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.0 \mathrm{~Hz},{ }^{4} J(\mathrm{H}, \mathrm{H})=1.3 \mathrm{~Hz}, 2 \mathrm{H}\right.$, fluorenyl-H), 7.26 ("t", ${ }^{3} J(\mathrm{H}, \mathrm{H})=7.0 \mathrm{~Hz}, 2 \mathrm{H}$, fluorenyl-H), 7.22 ("dt", ${ }^{3} J(\mathrm{H}, \mathrm{H})=$ $6.5 \mathrm{~Hz},{ }^{4} J(\mathrm{H}, \mathrm{H})=1.5 \mathrm{~Hz}, 2 \mathrm{H}$, fluorenyl-H), $4.26\left(\mathrm{dsept},{ }^{1} J(\mathrm{Si}, \mathrm{H})=\right.$ $\left.184 \mathrm{~Hz},{ }^{3} J(\mathrm{H}, \mathrm{H})=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SiH}\right), 3.48(\mathrm{~s}, 1 \mathrm{H}$, fluorenyl-H), -0.28 $\left(\mathrm{d},{ }^{3} J(\mathrm{H}, \mathrm{H})=3.7 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{HSi}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(100.5 \mathrm{MHz}$, $\mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}$): $\delta 145.5,143.5,127.0,126.6,125.2,120.1$ (s, fluorenylC), $36.91(\mathrm{~s}, \alpha-\mathrm{C}),-6.42\left(\mathrm{~s}, \mathrm{HSi}\left(\mathrm{CH}_{3}\right)_{2}\right)$. $\mathrm{MS}(\mathrm{EI}): ~ m / z$ (relative intensity) 224 (41) $\left[\mathrm{M}^{+}\right], 209$ (17) $\left.\left[\mathrm{M}^{+}-\mathrm{CH}_{3}\right)\right], 165$ (43) [$\mathrm{M}^{+}-$ $\left.\mathrm{SiHMe}_{2}\right]$, 59 (100) [$\mathrm{SiHMe}_{2}{ }^{+}$]. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{Si}: \mathrm{C}, 80.29$; H, 7.19. Found: C, 81.40; H, 7.07.

General Procedure for the Lithiation of Silylated Indenyl and Fluorenyl Systems. Over a period of $10 \mathrm{~min}, 1.0$ equiv of n butyllithium (1.6 M solution in hexane) was added dropwise to a solution of the corresponding silylated aromatic hydrocarbon in n-hexane ($5 \mathrm{~mL} / \mathrm{mmol}$ of the reactants) at $-78{ }^{\circ} \mathrm{C}$. After being stirred for 2 h at low temperature, the reaction mixture was stirred for an additional 2 h at ambient temperature before the insoluble product was separated via filtration. The residue was washed with cold n-hexane (2 $\mathrm{mL} / \mathrm{mmol}$ desired product) and dried in vacuo, yielding the pure product.

3-(Dimethylsilyl)indene Lithium ($\mathbf{8 b}$). Following the procedure described above, 3-dimethylsilylindene (8a) $(1.451 \mathrm{~g}, 8.32 \mathrm{mmol})$ and n-butyllithium (1.60 M in hexane, $5.2 \mathrm{~mL}, 8.3 \mathrm{mmol}$) yielded $\mathbf{8 b}$ (0.934 $\mathrm{g}, 5.18 \mathrm{mmol}, 62 \%$) as a white powder. IR (Nujol, cm^{-1}): 2924 vs , $2734 \mathrm{w}, 2094 \mathrm{~m}(\nu(\mathrm{Si}-\mathrm{H})), 1463$ vs, $1377 \mathrm{~s}, 1318 \mathrm{~m}, 1288 \mathrm{w}, 1257$ $\mathrm{m}, 1212 \mathrm{~m}, 1155 \mathrm{~m}, 1141 \mathrm{w}, 1033 \mathrm{~m}, 991 \mathrm{w}, 970 \mathrm{~m}, 941 \mathrm{w}, 894 \mathrm{~m}$, $868 \mathrm{~m}, 834 \mathrm{~m}, 753 \mathrm{sh}, 722 \mathrm{~m}, 668 \mathrm{~m}, 630 \mathrm{w}, 534$ sh, $467 \mathrm{brm} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}$): $\delta 7.89(\mathrm{~m}, 2 \mathrm{H}$, indenyl- H$), 7.40(\mathrm{dd}$, ${ }^{3} J(\mathrm{H}, \mathrm{H})=7.7 \mathrm{~Hz},{ }^{4} J(\mathrm{H}, \mathrm{H})=1.0 \mathrm{~Hz}, 1 \mathrm{H}$, indenyl-H), 7.11-7.05 (m, 3 H , indenyl-H), $6.49\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=3.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, indenyl-H), 5.27 $\left(\mathrm{sept},{ }^{1} J(\mathrm{Si}, \mathrm{H})=176 \mathrm{~Hz},{ }^{3} J(\mathrm{H}, \mathrm{H})=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SiH}\right), 0.62\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})\right.$ $\left.=3.9 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{HSi}\left(\mathrm{CH}_{3}\right)_{2}(\mathrm{I})\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25\right.$ ${ }^{\circ} \mathrm{C}$): $\delta 134.9,132.4,127.2,125.5,124.2,121.4,116.9,116.7,96.4(\mathrm{~s}$, indenyl-C), $-1.08\left(\mathrm{~s}, \mathrm{HSi}\left(\mathrm{CH}_{3}\right)_{2}\right)$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{LiSi}: \mathrm{C}, 73.30$; H, 7.27. Found: C, 74.23; H, 6.84.

3-Dimethylsilyl-2-methylindene Lithium (9b). Following the procedure described above, 3-dimethylsilyl-2-methylindene (9a) (1.147 g, 6.12 mmol) and n-butyllithium (1.60 M in hexane, $3.8 \mathrm{~mL}, 6.1 \mathrm{mmol}$) yielded 9b ($0.842 \mathrm{~g}, 4.33 \mathrm{mmol}, 71 \%$) as a white powder. IR (neat, $\left.\mathrm{cm}^{-1}\right): 2921 \mathrm{vs}, 2723 \mathrm{w}, 2083 \mathrm{~s}(v(\mathrm{Si}-\mathrm{H})), 1463 \mathrm{vs}, 1411 \mathrm{w}, 1377 \mathrm{~s}$, $1350 \mathrm{~m}, 1336 \mathrm{~m}, 1267 \mathrm{~m}, 1244 \mathrm{~m}, 1203 \mathrm{w}, 1153 \mathrm{w}, 1120 \mathrm{w}, 1052 \mathrm{~m}$, 1000 w, 908 w, $881 \mathrm{~s}, 833 \mathrm{~s}, 801 \mathrm{~s}, 760 \mathrm{~s}, 734 \mathrm{~s}, 696 \mathrm{w}, 669 \mathrm{w}, 647$ $\mathrm{m}, 483$ brs. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}$): $\delta 7.95\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=\right.$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}$, indenyl-H), $7.33\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, indenyl-H), $7.06-7.01(\mathrm{~m}, 2 \mathrm{H}$, indenyl-H), $6.24(\mathrm{~s}, 1 \mathrm{H}$, indenyl-H), 5.31 (sept, $\left.{ }^{1} J(\mathrm{Si}, \mathrm{H})=180 \mathrm{~Hz},{ }^{3} J(\mathrm{H}, \mathrm{H})=3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SiH}\right), 2.66(\mathrm{~s}, 3 \mathrm{H}$, indenyl-
$\left.\mathrm{CH}_{3}\right), 0.62\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{HSi}\left(\mathrm{CH}_{3}\right)_{2}(\mathrm{I})\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (100.5 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}$): $\delta 135.8,135.7,131.1,120.6,119.6,119.5$, $116.4,115.6,91.6$, (s, indenyl-C), 17.28 (s , indenyl- CH_{3}), -0.36 (s, $\mathrm{HSi}\left(\mathrm{CH}_{3}\right)_{2}$). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{LiSi}: \mathrm{C}, 74.19 ; \mathrm{H}, 7.78$. Found: C, 73.95; H, 7.37.

9-(Dimethylsilyl)fluorene Lithium (10b). Following the procedure described above, 9-(dimethylsilyl)fluorene (10a) ($1.122 \mathrm{~g}, 5.00 \mathrm{mmol}$) and n-butyllithium (1.60 M in hexane, $3.1 \mathrm{~mL}, 5.0 \mathrm{mmol}$) yielded $\mathbf{1 0 b}$ $(0.671 \mathrm{mg}, 2.92 \mathrm{mmol}, 58.3 \%)$ as a white powder. IR (Nujol, cm^{-1}): 2923 vs, 2854 vs, $2724 \mathrm{w}, 2085 \mathrm{~s}(v(\mathrm{Si}-\mathrm{H})), 1577 \mathrm{w}, 1463$ vs, 1377 s, 1321 s, 1266 w, $1212 \mathrm{~m}, 1200 \mathrm{w}, 1151 \mathrm{w}, 1096 \mathrm{w}, 1067 \mathrm{~m}, 1043 \mathrm{w}$, $1008 \mathrm{w}, 988 \mathrm{~m}, 926 \mathrm{w}, 842 \mathrm{w}, 821 \mathrm{w}, 770 \mathrm{w}, 751 \mathrm{~m}, 726 \mathrm{~s}, 688 \mathrm{w}$, $542 \mathrm{~m}, 494 \mathrm{w}, 429 \mathrm{~m} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}$): $\delta 8.08(\mathrm{~d}$, ${ }^{3} J(\mathrm{H}, \mathrm{H})=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, fluorenyl-H), $7.76\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.9 \mathrm{~Hz}, 2 \mathrm{H}\right.$, fluorenyl-H), 7.25 ("t", ${ }^{3} J(\mathrm{H}, \mathrm{H})=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, fluorenyl-H), 7.12 ("t", ${ }^{3} J(\mathrm{H}, \mathrm{H})=7.6 \mathrm{~Hz}, 2 \mathrm{H}$, fluorenyl-H), $5.53\left(\mathrm{sept},{ }^{1} J(\mathrm{Si}, \mathrm{H})=168 \mathrm{~Hz}\right.$, $\left.{ }^{3} J(\mathrm{H}, \mathrm{H})=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SiH}\right), 0.71\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=3.9 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{HSi}-\right.$ $\left.\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}$): $\delta 142.3,127.2$, 121.7, 121.0, 119.1, 117.1, 111.5 (s, fluorenyl-C), $-0.57\left(\mathrm{~s}, \mathrm{HSi}\left(\mathrm{CH}_{3}\right)_{2}\right)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{LiSi}: \mathrm{C}, 78.23$; H, 6.56. Found: C, 77.37; H, 6.81 .

General Procedure for the Preparation of ansa-Lanthanidocene Amides. In a glovebox, $\operatorname{Ln}\left[\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right]_{3}(\mathrm{THF})_{x}(7 \mathbf{a}-\mathbf{e})$ and the equimolar amount of ligand $\mathbf{1 - 6}$ were dissolved in toluene (20 mL / mmol silylamide), refluxed for the time mentioned below, and evaporated to dryness. For the bis(indene) or bis(fluorene) 2-6, the residue was dissolved in mesitylene ($20 \mathrm{~mL} / \mathrm{mmol}$ silylamide) and refluxed a second time. After the solvent was removed in vacuo, the resulting powder was dissolved in toluene. The filtrated solution was cooled to $-45^{\circ} \mathrm{C}$, upon which a microcrystalline precipitate formed. After the solvent was decanted, this precipitate was dissolved in hot n-hexane and cooled slowly to $-45^{\circ} \mathrm{C}$, at which temperature pure $\mathbf{1 1 b}, \mathbf{c}-\mathbf{1 6 b}$ were obtained as single crystals. This procedure could be scaled up from 0.5 to 20 mmol .
[Bis(dimethylsilyl)amido][$\boldsymbol{\eta}^{\mathbf{5}}: \boldsymbol{\eta}^{\mathbf{5}}$-bis(2,3,4,5-tetramethylcyclopen-tadien-1-yl)dimethylsilyl]yttrium(III) (11b). Following the procedure described above, $\mathbf{7 b}(630.1 \mathrm{mg}, 1.000 \mathrm{mmol})$ and $1(300.6 \mathrm{mg}, 1.000$ $\mathrm{mmol})$ yielded $11 \mathrm{~b}(462.2 \mathrm{mg}, 0.820 \mathrm{mmol}, 82 \%)$ as colorless prisms (15 h of refluxing in toluene). IR (Nujol, cm^{-1}): 2922 vs, 2853 vs, $2724 \mathrm{~m}, 1789 \operatorname{brw}(\nu(\mathrm{Si}-\mathrm{H})), 1463 \mathrm{vs}, 1377 \mathrm{~s}, 1371 \mathrm{sh}, 1312 \mathrm{~m}, 1244$ m, $1154 \mathrm{w}, 1086 \mathrm{w}, 1020 \mathrm{~m}, 972 \mathrm{w}, 905 \mathrm{brm}, 900 \mathrm{w}, 836 \mathrm{w}, 811 \mathrm{w}$, $761 \mathrm{w}, 722 \mathrm{~m}, 676 \mathrm{~m}, 462 \mathrm{w} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}$): δ $4.00\left(\mathrm{dsept},{ }^{1} J(\mathrm{Y}, \mathrm{H})=2.9 \mathrm{~Hz},{ }^{1} J(\mathrm{Si}, \mathrm{H})=147 \mathrm{~Hz},{ }^{3} J(\mathrm{H}, \mathrm{H})=2.70\right.$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{SiH}), 2.06\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{Cp}\left(\mathrm{CH}_{3}\right)(\mathrm{I})\right), 1.95\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{Cp}\left(\mathrm{CH}_{3}\right)-\right.$ (II)), $0.97\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Cp}^{\prime \prime}{ }_{2} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.24\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=2.5 \mathrm{~Hz}, 12 \mathrm{H}\right.$, $\left.\mathrm{HSi}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(100.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}\right): \delta 127.3$ (s, $\left.\mathrm{C}_{\mathrm{Cp}}(\mathrm{I})\right), 122.8\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Cp}}(\mathrm{II})\right), 108.7\left(\mathrm{~s}, \mathrm{SiC}_{\mathrm{Cp}}\right), 14.5\left(\mathrm{~s}, \mathrm{Cp}\left(\mathrm{CH}_{3}\right)(\mathrm{I})\right), 12.0$ (s, $\left.\mathrm{Cp}\left(\mathrm{CH}_{3}\right)(\mathrm{II})\right), 4.33\left(\mathrm{~s}, \mathrm{Cp}{ }_{2}{ }_{2} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.55\left(\mathrm{~s}, \mathrm{HSi}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (79.5 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}$): $\delta-19.87$ (s, NSi), -32.45 (brs, $\mathrm{Si}_{\text {bridge }}$). MS (CI): m / z (relative intensity) 519 (14) $\left[\mathrm{M}^{+}\right], 447$ (8) $\left[\mathrm{M}^{+}\right.$ $\left.-\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)\right], 389$ (3) $\left[\mathrm{M}^{+}-\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}+2 \mathrm{H}\right], 331(46)\left[\mathrm{Y}\left(\mathrm{Cp}^{\prime \prime}\right)^{+}\right]$, 316 (100) $\left[\mathrm{SiMe}_{2}\left(\mathrm{Cp}^{\prime \prime}\right) \mathrm{CH}_{4}^{+}\right], 301$ (16) $\left[\mathrm{SiMe}_{2}\left(\mathrm{Cp}^{\prime \prime}\right) \mathrm{H}^{+}\right], 179$ (7) $\left[\mathrm{SiMe}_{2}\left(\mathrm{Cp}^{\prime \prime}\right)^{+}\right], 118$ (2) $\left[\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)(\mathrm{SiHMe})^{+}\right]$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{44^{-}}$ $\mathrm{NSi}_{3} \mathrm{Y}$: C, $55.46 ; \mathrm{H}, 8.53$; N, 2.69. Found: C, $54.24 ; \mathrm{H}, 8.89 ; \mathrm{N}, 2.37$.
[Bis(dimethylsilyl)amido][$\boldsymbol{\eta}^{\mathbf{5}}: \boldsymbol{\eta}^{\mathbf{5}}$-bis(2,3,4,5-tetramethylcyclopen-tadien-1-yl)dimethylsilyl]lanthanum(III) (11c). Following the procedure described above, $7 \mathbf{c}(340.1 \mathrm{mg}, 0.500 \mathrm{mmol})$ and $\mathbf{1}(150.3 \mathrm{mg}$, $0.500 \mathrm{mmol})$ yielded $11 \mathrm{c}(273.5 \mathrm{mg} 0.480 \mathrm{mmol}, 96 \%)$ as colorless prisms (15 h of refluxing in toluene). IR (Nujol, cm^{-1}): $2922 \mathrm{vs}, 2853$ vs, $2723 \mathrm{~m}, 1845$ brw $(v(\mathrm{Si}-\mathrm{H})), 1462$ vs, 1454 vs, $1377 \mathrm{~s}, 1250 \mathrm{~m}$, $1161 \mathrm{w}, 1100 \mathrm{w}, 1092 \mathrm{w}, 1015 \mathrm{w}, 974 \mathrm{w}, 928 \mathrm{~m}, 900 \mathrm{w}, 881 \mathrm{w}, 834$ w, $801 \mathrm{w}, 723 \mathrm{~m}, 663 \mathrm{w} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right): \delta 4.18$ $\left(\mathrm{m},{ }^{1} J(\mathrm{Si}, \mathrm{H})=150 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{SiH}\right), 2.18\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{Cp}\left(\mathrm{CH}_{3}\right)(\mathrm{I})\right), 1.95(\mathrm{~s}$, $\left.12 \mathrm{H}, \mathrm{Cp}\left(\mathrm{CH}_{3}\right)(\mathrm{II})\right), 0.95\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Cp}^{\prime \prime}{ }_{2} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.19\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=\right.$ $\left.2.5 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{HSi}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}\right)$: $\delta 127.3\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Cp}}(\mathrm{I})\right), 126.1$ (s, $\left.\mathrm{C}_{\mathrm{Cp}}(\mathrm{II})\right), 110.5\left(\mathrm{~s}, \mathrm{SiC}_{\mathrm{Cp}}\right), 14.5(\mathrm{~s}, \mathrm{Cp}-$ $\left.\left(\mathrm{CH}_{3}\right)(\mathrm{I})\right), 11.3\left(\mathrm{~s}, \mathrm{Cp}\left(\mathrm{CH}_{3}\right)(\mathrm{II})\right), 4.50\left(\mathrm{~s}, \mathrm{Cp}^{\prime \prime}{ }_{2} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.23$ ($\mathrm{s}, \mathrm{HSi}-$ $\left.\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($79.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}$): $\delta-17.31$ (s, NSi), -30.41 (brs, $\mathrm{Si}_{\text {bridge }}$). MS (CI): m / z (relative intensity) $569(85)\left[\mathrm{M}^{+}\right]$, 554 (15) $\left[\mathrm{M}^{+}-\mathrm{CH}_{3}\right], 437$ (100) $\left[\mathrm{M}^{+}-\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right], 421$ (12) $\left[\mathrm{M}^{+}\right.$ $\left.-\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}-\mathrm{CH}_{3}\right], 179(7)\left[\mathrm{SiMe}_{2}\left(\mathrm{Cp}^{\prime \prime}\right)^{+}\right], 118$ (2) $\left[\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)-\right.$
$(\mathrm{SiHMe})^{+}$]. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{LaNSi}_{3}: \mathrm{C}, 50.59 ; \mathrm{H}, 7.78 ; \mathrm{N}, 2.46$. Found: C, 50.47; H, 8.14; N, 2.28.
$r a c$-[Bis(dimethylsilyl)amido][$\boldsymbol{\eta}^{5}: \boldsymbol{\eta}^{5}$-bis-2,2-(inden-1-yl)propyl]yttrium(III) (rac-12b). Following the procedure described above, 7b $(630.1 \mathrm{mg}, 1.000 \mathrm{mmol})$ and $2(274.0 \mathrm{mg}, 1.000 \mathrm{mmol})$ yielded rac12b $(69.8 \mathrm{mg}, 0.142 \mathrm{mmol}, 14 \%)$ as yellow prisms (15 h of refluxing in toluene and 5 h of refluxing in mesitylene). IR (Nujol, cm^{-1}): 2922 vs, 2853 vs, $2723 \mathrm{~m}, 1821 \mathrm{w}(v(\mathrm{Si}-\mathrm{H})), 1461 \mathrm{vs}, 1377 \mathrm{~s}, 1306 \mathrm{w}$, $1246 \mathrm{~m}, 1216 \mathrm{w}, 1204 \mathrm{w}, 1153 \mathrm{w}, 1044 \mathrm{w}, 1003 \mathrm{w}, 915 \mathrm{~m}, 896 \mathrm{~m}$, $842 \mathrm{~m}, 804 \mathrm{w}, 766 \mathrm{~m}, 749 \mathrm{~s}, 743 \mathrm{~m}, 721 \mathrm{~m}, 685 \mathrm{w} ; 672 \mathrm{w}, 611 \mathrm{w}, 468$ w, $454 \mathrm{~m}, 427 \mathrm{w} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 75^{\circ} \mathrm{C}$): $\delta 7.74\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})\right.$ $=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 4), 7.39\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 6\right), 6.91(\mathrm{dd}$, $\left.2 \times{ }^{3} J(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 5\right), 6.73\left(\mathrm{dd}, 2 \times{ }^{3} J(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}, 2 \mathrm{H}\right.$, H7), $6.62\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=3.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2\right), 6.19\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=3.1 \mathrm{~Hz}\right.$, $2 \mathrm{H}, \mathrm{H} 3), 3.56\left(\mathrm{dsept},{ }^{1} J(\mathrm{Si}, \mathrm{H})=152 \mathrm{~Hz},{ }^{3} J(\mathrm{H}, \mathrm{H})=2.8 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\mathrm{SiH}), 2.14\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.11\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=2.7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{HSiCH}_{3}-\right.$ (I)), $0.07\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=2.7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{HSiCH}_{3}(\mathrm{II})\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100.5 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60{ }^{\circ} \mathrm{C}\right): \delta 126.2 / 125.8 / 123.7 / 123.0 / 121.6 / 118.9 / 114.6 /$ 109.1/101.7 (s, indenyl-C), 40.5 (s, bridge-C), $28.9\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.59$ ($\mathrm{s}, \mathrm{HSi}\left(\mathrm{CH}_{3}\right)_{2}(\mathrm{I})$), 2.07 ($\left.\mathrm{s}, \mathrm{HSi}\left(\mathrm{CH}_{3}\right)_{2}(\mathrm{II})\right) . \mathrm{MS}(\mathrm{CI}): \mathrm{m} / \mathrm{z}$ (relative intensity $)=851(6)\left[\mathrm{M}^{+}+\mathrm{Y}\left(\mathrm{Me}_{2} \mathrm{CInd}_{2}\right)\right], 845(3)\left[\mathrm{M}^{+}+\mathrm{Y}(\mathrm{N}(\mathrm{Si}-\right.$ $\left.\left.\left.\mathrm{HMe}_{2}\right)_{2}\right)_{2}\right], 491$ (100) $\left[\mathrm{M}^{+}\right], 476$ (12) $\left[\mathrm{M}^{+}-\mathrm{CH}_{3}\right], 359$ (14) $\left[\mathrm{M}^{+}-\right.$ $\left.\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right], 272$ (2) $\left[\mathrm{Me}_{2} \mathrm{CInd}_{2}{ }^{+}\right]$, 247 (4) $\left[\mathrm{M}^{+}-\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right.$ - Ind $+2 \mathrm{H}], 132(4)\left[\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}{ }^{+}\right], 118(7)\left[\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)(\mathrm{SiHMe})^{+}\right]$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{NSi}_{2} \mathrm{Y}$: C, 61.08; H, 6.56; N, 2.85. Found: C, 59.18; H, 6.70; N, 2.48.
rac-[Bis(dimethylsilyl)amido][$\boldsymbol{\eta}^{5}: \boldsymbol{\eta}^{5}$-bis(2-methylinden-1-yl)dimethylsilyl]scandium(III) (rac-13a). Following the procedure described above, $7 \mathbf{a}(1028.1 \mathrm{mg}, 2.000 \mathrm{mmol})$ and $\mathbf{3}(633.0 \mathrm{mg}, 2.000$ $\mathrm{mmol})$ yielded rac-13a $(201.4 \mathrm{mg}, 0.410 \mathrm{mmol}, 20 \%)$ as lemon yellow prisms (24 h of refluxing in toluene and 12 h of refluxing in mesitylene). IR (Nujol, cm^{-1}): 2924 vs, 2953 vs, $2724 \mathrm{w}, 2012 \mathrm{~m}, 1793$ brw (v ($\mathrm{Si}-\mathrm{H}$)), 1460 vs, 1377 vs, $1346 \mathrm{w}, 1304 \mathrm{w}, 1272 \mathrm{w}, 1245 \mathrm{~s}, 1152 \mathrm{w}$, 1072 m, 1038 brm, $1000 \mathrm{~m}, 898 \mathrm{~s}, 834 \mathrm{~s}, 806 \mathrm{~s}, 802 \mathrm{~s}, 764 \mathrm{~m}, 744 \mathrm{~m}$, $721 \mathrm{w}, 691 \mathrm{~m}, 654 \mathrm{w}, 611 \mathrm{w}, 566 \mathrm{w}, 484 \mathrm{w}, 455 \mathrm{~s}$. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right): \delta 7.78\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 7\right), 7.49(\mathrm{~d}$, $\left.{ }^{3} J(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 4\right), 6.85\left(\mathrm{dd}, 2 \times{ }^{3} J(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz}, 2 \mathrm{H}\right.$, H6), $6.80\left(\mathrm{dd}, 2 \times{ }^{3} J(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 5\right), 6.23(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H} 3), 2.96$ $\left(\mathrm{m},{ }^{1} J(\mathrm{Si}, \mathrm{H})=155 \mathrm{~Hz},{ }^{3} J(\mathrm{H}, \mathrm{H})=2.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{SiH}\right), 2.27(\mathrm{~s}, 6 \mathrm{H}$, CH_{3}-indenyl), $1.12\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.11\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=2.5 \mathrm{~Hz}, 6 \mathrm{H}\right.$, $\left.\mathrm{HSiCH}_{3}(\mathrm{I})\right), 0.060\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=2.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{HSiCH}_{3}(\mathrm{II})\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}$): $\delta 136.9 / 132.8 / 131.8 / 125.0 / 124.8 /$ 122.9/122.8/113.2 (s, C2-C9), 100.8 (s, C1), 18.8 (s, CH_{3}-indenyl), $3.45\left(\mathrm{~s}, \mathrm{HSiCH}_{3}\right), 3.07(\mathrm{~s}, \mathrm{SiCH} 3) . \mathrm{MS}(\mathrm{CI}): ~ m / z$ (relative intensity) 491 (16) $\left[\mathrm{M}^{+}\right], 476$ (10) $\left[\mathrm{M}^{+}-\mathrm{CH}_{3}\right], 432$ (12) $\left[\mathrm{M}^{+}-\mathrm{SiHMe}_{2}\right], 359$ (10) $\left[\mathrm{M}^{+}-\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right], 316$ (30) $\left[\mathrm{SiMe}_{2}(\mathrm{Me}-\mathrm{Ind})_{2} \mathrm{H}^{+}\right], 301$ (14) $\left[\mathrm{SiMe}_{2}(\mathrm{Me}-\mathrm{Ind})_{2} \mathrm{H}^{+}-\mathrm{CH}_{3}\right], 187$ (100) $\left[\mathrm{SiMe}_{2}(\mathrm{Me}-\mathrm{Ind}) \mathrm{H}^{+}\right], 159$ (6) [Si(Me-Ind) $\left.\mathrm{H}_{2}{ }^{+}\right], 132$ (2) $\left[\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}{ }^{+}\right.$]. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{NSi}_{3^{-}}$ Sc: C, 63.50; H, 7.38; N, 2.85. Found: C, 62.48; H, 7.33; N, 2.53.
rac-[Bis(dimethylsilyl)amido][$\boldsymbol{\eta}^{\mathbf{5}}: \boldsymbol{\eta}^{\mathbf{5}}$-bis(2-methylinden-1-yl)dimethylsilyl]yttrium(III) (rac-13b). Following the procedure described above, $\mathbf{7 b}(630.1 \mathrm{mg}, 1.000 \mathrm{mmol})$ and $\mathbf{3}(316.5 \mathrm{mg}, 1.000$ mmol) yielded rac-13b ($278.3 \mathrm{mg}, 0.520 \mathrm{mmol}, 52 \%$) as lemon yellow prisms (15 h of refluxing in toluene and 3 h of refluxing in mesitylene). IR (Nujol, cm^{-1}): 2922 vs, 2853 vs, $2723 \mathrm{~m}, 1804$ brw $(\nu(\mathrm{Si}-\mathrm{H})$), 1464 vs, 1410 w, $1379 \mathrm{~s}, 1344 \mathrm{~m}, 1333 \mathrm{~m}, 1279 \mathrm{~m}, 1246 \mathrm{~s}, 1150 \mathrm{~m}$, $1037 \mathrm{~m}, 1000 \mathrm{~m}, 902 \mathrm{~m}, 876 \mathrm{~s}, 833 \mathrm{~s}, 807 \mathrm{~s}, 781 \mathrm{~s}, 765 \mathrm{~s}, 748 \mathrm{~s}, 690$ $\mathrm{m}, 656 \mathrm{w}, 644 \mathrm{~m}, 611 \mathrm{w}, 571 \mathrm{w}, 484 \mathrm{w}, 460 \mathrm{~m}, 449 \mathrm{~s}, 429 \mathrm{~m} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}$): $\delta 7.87\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 7\right), 7.38$ $\left(\mathrm{d},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 4\right), 6.91\left(\mathrm{dd}, 2 \times{ }^{3} J(\mathrm{H}, \mathrm{H})=7.6 \mathrm{~Hz}, 2 \mathrm{H}\right.$, H6), $6.84\left(\mathrm{dd}, 2 \times{ }^{3} J(\mathrm{H}, \mathrm{H})=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 5\right), 6.15(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H} 3), 2.98$ $\left(\mathrm{dsept},{ }^{1} J(\mathrm{Y}, \mathrm{H})=4.6 \mathrm{~Hz},{ }^{1} J(\mathrm{Si}, \mathrm{H})=142 \mathrm{~Hz},{ }^{3} J(\mathrm{H}, \mathrm{H})=2.4 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\mathrm{SiH}), 2.39\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right.$-indenyl), $1.10\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.067$ (d, $\left.{ }^{3} J(\mathrm{H}, \mathrm{H})=2.4 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{HSiCH}_{3}(\mathrm{I})\right), 0.034\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=2.4 \mathrm{~Hz}, 6 \mathrm{H}\right.$, $\left.\mathrm{HSiCH}_{3}(\mathrm{II})\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100.5 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right): \delta 138.0 / 131.3 /$ 131.0/123.4/123.3/122.1/121.9/108.2 (s, C2-C9), 99.3 ($\mathrm{s}, \mathrm{C} 1$), 18.0 (s, CH_{3}-indenyl), $3.15\left(\mathrm{~s}, \mathrm{SiCH}_{3}\right), 2.66\left(\mathrm{~s}, \mathrm{HSiCH}_{3}(\mathrm{I})\right), 2.64\left(\mathrm{~s}, \mathrm{HSiCH}_{3}-\right.$ (II)). MS (CI): m / z (relative intensity) 535 (6) $\left[\mathrm{M}^{+}\right], 316$ (32) [$\mathrm{SiMe}_{2^{-}}$ (Me-Ind) $\left.{ }_{2} \mathrm{H}^{+}\right], 187$ (100) $\left[\mathrm{SiMe}_{2}(\mathrm{Me}-\mathrm{Ind}) \mathrm{H}^{+}\right], 132$ (7) $\left[\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}{ }^{+}\right]$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{NSi}_{3} \mathrm{Y}$: C, 58.29 ; H, 6.77; N, 2.61. Found: C, 56.32; H, 6.80; N, 2.34.
$r a c-[\operatorname{Bis}(d i m e t h y l s i l y l) a m i d o]\left[\eta^{5}: \eta^{5}\right.$-bis(2-methylinden-1-yl)dimethylsilyl]lanthanum(III) (rac-13c). Following the procedure described above, $7 \mathbf{c}(328.8 \mathrm{mg}, 0.483 \mathrm{mmol})$ and $\mathbf{3}(152.9 \mathrm{mg}, 0.483$ $\mathrm{mmol})$ yielded rac-13c ($137.8 \mathrm{mg}, 0.235 \mathrm{mmol}, 49 \%$) as lemon yellow prisms (9 h of refluxing in toluene and 1 h of refluxing in mesitylene). IR (Nujol, cm^{-1}): 2923 vs, 2854 vs, 2724 w, 1838 brm ($v(\mathrm{Si}-\mathrm{H})$), 1463 vs, 1417 w, 1377 s, $1348 \mathrm{w}, 1339 \mathrm{w}, 1302 \mathrm{~m}, 1270 \mathrm{~m}, 1249 \mathrm{~s}$, 1209 w, 1152 m, 1033 sh, $1012 \mathrm{~m}, 954$ brm, 892 w, $874 \mathrm{~m}, 836 \mathrm{~m}$, $806 \mathrm{~m}, 778 \mathrm{~m}, 744 \mathrm{~m}, 721 \mathrm{w}, 685 \mathrm{~m}, 647 \mathrm{w}, 611 \mathrm{w}, 570 \mathrm{w}, 482 \mathrm{w}$, $462 \mathrm{w}, 441 \mathrm{~m}, 420 \mathrm{~m} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}$): $\delta 7.78$ (d, $\left.{ }^{3} J(\mathrm{H}, \mathrm{H})=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 7\right), 7.29\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 4\right)$, $6.79\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 6\right), 6.74\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz}, 2 \mathrm{H}\right.$, H5), $6.13(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H} 3), 3.74\left(\mathrm{~m},{ }^{1} J(\mathrm{Si}, \mathrm{H})=145 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{SiH}\right), 2.61(\mathrm{~s}$, $6 \mathrm{H}, \mathrm{CH}_{3}$-indenyl), $1.05\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.06\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=2.5\right.$ $\left.\mathrm{Hz}, 6 \mathrm{H}, \mathrm{HSiCH}_{3}(\mathrm{I})\right),-0.01\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=2.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{HSiCH}_{3}(\mathrm{II})\right)$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}$): $\delta 136.1 / 133.5 / 133.2 / 124.0 /$ 121.8/ 121.4/121.0/107.1 ($\mathrm{s}, \mathrm{C} 2-\mathrm{C} 9$), 104.3 ($\mathrm{s}, \mathrm{C} 1$), 18.4 ($\mathrm{s}, \mathrm{CH}_{3}{ }^{-}$ indenyl), $3.16\left(\mathrm{~s}, \mathrm{HSi}_{3}(\mathrm{I})\right), 2.29\left(\mathrm{~s}, \mathrm{HSiCH}_{3}(\mathrm{II})\right), 1.84\left(\mathrm{~s}, \mathrm{SiCH}_{3}\right)$. $\mathrm{MS}(\mathrm{CI}): \mathrm{m} / \mathrm{z}$ (relative intensity) $=586(54)\left[\mathrm{M}^{+}\right], 453(34)\left[\mathrm{M}^{+}-\right.$ $\left.\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right], 316(47)\left[\mathrm{Me}_{2} \mathrm{Si}(\mathrm{Me}-\mathrm{Ind})_{2}{ }^{+}\right], 301(24)\left[\mathrm{MeSi}(\mathrm{Me}-\mathrm{Ind})_{2}{ }^{+}\right]$, 187 (100) $\left[\mathrm{SiMe}_{2}(\mathrm{Me}-\mathrm{Ind}) \mathrm{H}^{+}\right], 132$ (60) $\left[\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}{ }^{+}\right], 118$ (45) $\left[\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)(\mathrm{SiHMe})^{+}\right]$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{LaNSi}_{3}: \mathrm{C}, 53.31 ; \mathrm{H}$, 6.19; N, 2.39. Found: C, 54.51; H, 6.50; N, 1.80.
rac-[Bis(dimethylsilyl)amido][$\boldsymbol{\eta}^{5}: \boldsymbol{\eta}^{5}$-bis(2-methylinden-1-yl)dimethylsilyl]neodymium(III) ($\mathbf{r a c - 1 3 d}$). Following the procedure described above, $7 \mathbf{d}(701.0 \mathrm{mg}, 1.023 \mathrm{mmol})$ and $\mathbf{3}(323.8 \mathrm{mg}, 1.023$ mmol) yielded rac -13d ($266.4 \mathrm{mg}, 0.451 \mathrm{mmol}, 44 \%$) as green prisms (12 h of refluxing in toluene and 2 h of refluxing in mesitylene). IR (Nujol, cm^{-1}): 2922 vs, 2853 vs, 2724 w, 1824 brm $(v(\mathrm{Si}-\mathrm{H})$), 1463 vs, 1409 w, 1377 s, 1344 w, 1332 w, 1302 m, 1267 m, 1246 s, 1198 w, $1150 \mathrm{~m}, 1029 \mathrm{sh}, 1000 \mathrm{~m}, 975 \mathrm{brm}, 937 \mathrm{sh} \mathrm{m}, 898 \mathrm{w}, 873 \mathrm{~m}, 833$ $\mathrm{m}, 806 \mathrm{~m}, 791 \mathrm{w}, 776 \mathrm{~m}, 748 \mathrm{~m}, 721 \mathrm{w}, 686 \mathrm{~m}, 652 \mathrm{w}, 643 \mathrm{w}, 612 \mathrm{w}$, $570 \mathrm{w}, 483 \mathrm{w}, 462 \mathrm{w}, 445 \mathrm{~m}, 420 \mathrm{~m} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20.6$ $\left.{ }^{\circ} \mathrm{C}\right): \delta 23.6(\mathrm{~s}, 6 \mathrm{H}, \mathrm{lw}=105 \mathrm{~Hz}), 13.7(\mathrm{~s}, 6 \mathrm{H}, 1 \mathrm{w}=46 \mathrm{~Hz}), 11.5(\mathrm{~s}$, $6 \mathrm{H}, \mathrm{lw}=45 \mathrm{~Hz}), 2.2(\mathrm{~s}, 2 \mathrm{H}, \mathrm{lw}=5 \mathrm{~Hz}),-0.4(\mathrm{~s}, 2 \mathrm{H}, \mathrm{lw}=186$ $\mathrm{Hz}),-2.1(\mathrm{~s}, 2 \mathrm{H}, \mathrm{lw}=60 \mathrm{~Hz}),-11.1(\mathrm{~s}, 6 \mathrm{H}, \mathrm{lw}=304 \mathrm{~Hz}),-13.4$ (s, $2 \mathrm{H}, \mathrm{lw}=34 \mathrm{~Hz}$), $-21.7(\mathrm{~s}, 2 \mathrm{H}, \mathrm{lw}=91 \mathrm{~Hz}) ;$ a $\mathrm{Si}-\mathrm{H}$ signal could not be detected. MS (CI): m/z (relative intensity) 591 (55) $\left[\mathrm{M}^{+}\right], 458\left(30\left[\mathrm{M}^{+}-\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right], 316(47)\left[\mathrm{SiMe}_{2}(\mathrm{Me}-\mathrm{Ind})_{2} \mathrm{H}^{+}\right]\right.$, 301 (25) [$\left.\mathrm{MeSi}(\mathrm{Me}-\mathrm{Ind})_{2}{ }^{+}\right], 187$ (100) $\left[\mathrm{SiMe}_{2}(\mathrm{Me}-\mathrm{Ind}) \mathrm{H}^{+}\right], 132$ (55) $\left[\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}{ }^{+}\right], 118$ (49) $\left[\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)(\mathrm{SiHMe})^{+}\right]$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{NNdSi}_{3}$: C, $52.83 ; \mathrm{H}, 6.14$; N, 2.37. Found: C, $52.11 ; \mathrm{H}, 6.50$; N, 2.30.
$r a c$-[Bis(dimethylsilyl)amido] $\left[\eta^{5}: \eta^{5}\right.$-bis(2-methylinden-1-yl)dimethylsilyl]lutetium(III) (rac-13e). Following the procedure described above, $7 \mathrm{e}(716.2 \mathrm{mg}, 1.000 \mathrm{mmol})$ and $\mathbf{3}(316.5 \mathrm{mg}, 1.000 \mathrm{mmol})$ yielded rac-13e ($201.5 \mathrm{mg}, 0.324 \mathrm{mmol}, 32 \%$) as lemon yellow prisms (24 h of refluxing in toluene and 24 h of refluxing in mesitylene). IR (Nujol, cm^{-1}): 2922 vs, 2853 vs, $2723 \mathrm{~m}, 1759$ brw $(v(\mathrm{Si}-\mathrm{H})$), 1463 vs, $1409 \mathrm{w}, 1377 \mathrm{~s}, 1341 \mathrm{~m}, 1335 \mathrm{~m}, 1269 \mathrm{~m}, 1245 \mathrm{~s}, 1150 \mathrm{w}, 1086$ sh, $1035 \mathrm{~m}, 997 \mathrm{w}, 901 \mathrm{~m}, 833 \mathrm{~m}, 807 \mathrm{~m}, 783 \mathrm{~s}, 764 \mathrm{~m}, 746 \mathrm{~s}, 690 \mathrm{~m}$, $658 \mathrm{w}, 657 \mathrm{w}, 644 \mathrm{~m}, 612 \mathrm{w}, 570 \mathrm{w}, 484 \mathrm{w}, 448 \mathrm{~s}, 428 \mathrm{~m} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}$): $\delta 7.84\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 7\right), 7.42$ $\left(\mathrm{d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 4\right), 6.90\left(\mathrm{dd}, 2 \times{ }^{3} J(\mathrm{H}, \mathrm{H})=7.7 \mathrm{~Hz}, 2 \mathrm{H}\right.$, H6), $6.83\left(\mathrm{dd}, 2 \times{ }^{3} J(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 5\right), 6.19(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H} 3), 3.29$ (sept, $\left.{ }^{1} J(\mathrm{Si}, \mathrm{H})=146 \mathrm{~Hz},{ }^{3} J(\mathrm{H}, \mathrm{H})=2.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{SiH}\right), 2.39(\mathrm{~s}, 6 \mathrm{H}$, CH_{3}-indenyl), $1.10\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.10\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=2.6 \mathrm{~Hz}, 6 \mathrm{H}\right.$, $\left.\mathrm{HSiCH}_{3}(\mathrm{I})\right), 0.07\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=2.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{HSiCH}_{3}(\mathrm{II})\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100.5 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right): \delta 136.6 / 130.8 / 130.2 / 123.7 / 123.5 /$ 122.1/121.9/108.1 (s, C2-C9), 98.2 (s, C1), 17.91 ($\mathrm{s}, \mathrm{CH}_{3}$-indenyl(I)), 17.89 (s, CH_{3}-indenyl(II)), $3.06\left(\mathrm{~s}, \mathrm{HSiCH}_{3}\right), 2.78\left(\mathrm{~s}, \mathrm{SiCH}_{3}\right) . \mathrm{MS}$ (CI): m / z (relative intensity) $621(100)\left[\mathrm{M}^{+}-\mathrm{H}\right], 605(18)\left[\mathrm{M}^{+}-\right.$ $\left.\mathrm{CH}_{3}-2 \mathrm{H}\right], 562(4)\left[\mathrm{M}^{+}-\mathrm{SiHMe}_{2}\right], 389(10)\left[\mathrm{M}^{+}-\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right]$, 316 (8) $\left[\mathrm{SiMe}_{2}(\mathrm{Me}-\mathrm{Ind})_{2} \mathrm{H}^{+}\right], 310$ (13) [$\left.\mathrm{SiMe}_{2}(\mathrm{Me}-\mathrm{Ind})_{2}{ }^{+}-\mathrm{CH}_{3}\right], 187$ (27) $\left[\mathrm{SiMe}_{2}(\mathrm{Me}-\mathrm{Ind}) \mathrm{H}^{+}\right], 132$ (7) $\left[\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}{ }^{+}\right]$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{LuNSi}_{3}: \mathrm{C}, 50.22 ; \mathrm{H}, 5.84$; N, 2.26. Found: C, 50,12; H, 6.38; N, 1.96.

Bis[bis(dimethylsilyl)amido][$\boldsymbol{\eta}^{5}$-bis(2-methyl-4-phenylinden-1-yl)dimethylsilyl]yttrium(III) (14b). Following the procedure described above, $7 \mathbf{b}(630.1 \mathrm{mg}, 1.000 \mathrm{mmol})$ and $4(468.8 \mathrm{mg}, 1.000 \mathrm{mmol})$ yielded $\mathbf{1 4 b}(90.3 \mathrm{mg}, 0.065 \mathrm{mmol}, 11 \%)$ as lemon yellow prisms (24
h of refluxing in toluene and 10 h of refluxing in mesitylene). IR (Nujol, cm^{-1}): 2923 vs, 2853 vs, $2723 \mathrm{w}, 2069 \mathrm{~m}, 1830$ brw $(v(\mathrm{Si}-\mathrm{H})), 1462$ vs, $1610 \mathrm{w}, 1410 \mathrm{w}, 1379 \mathrm{~s}, 1344 \mathrm{~m}, 1333 \mathrm{~m}, 1279 \mathrm{~m}, 1246 \mathrm{~s}, 1150$ $\mathrm{m}, 1037 \mathrm{~m}, 1000 \mathrm{~m}, ~ 902 \mathrm{~m}, 876 \mathrm{~s}, 833 \mathrm{~s}, 807 \mathrm{~s}, 781 \mathrm{~s}, 765 \mathrm{~s}, 748 \mathrm{~s}$, $690 \mathrm{~m}, 656 \mathrm{w}, 644 \mathrm{~m}, 611 \mathrm{w}, 571 \mathrm{w}, 484 \mathrm{w}, 460 \mathrm{~m}, 449 \mathrm{~s}, 429 \mathrm{~m} .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right): \delta 7.88\left(\mathrm{dd},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}(\mathrm{H}, \mathrm{H})\right.$ $=1.3 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl(I)), $7.84\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.57(\mathrm{dd}$, ${ }^{3} J(\mathrm{H}, \mathrm{H})=8.4 \mathrm{~Hz},{ }^{4} J(\mathrm{H}, \mathrm{H})=1.3 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl(II)), 7.35-7.23(m, 4 H , phenyl + indenyl), $7.19-7.11$ (m,5 H, phenyl), 7.02 (dd, $2 \times$ $\left.{ }^{3} J(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.94(\mathrm{~s}, 1 \mathrm{H}$, indenyl), $6.82(\mathrm{~s}, 1 \mathrm{H}$, indenyl), $6.58\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.31\left(\mathrm{dsept},{ }^{1} J(\mathrm{Si}, \mathrm{H})=148 \mathrm{~Hz}\right.$, $\left.{ }^{3} J(\mathrm{H}, \mathrm{H})=2.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{SiH}\right), 3.66(\mathrm{~s}, 1 \mathrm{H}$, indenyl), $2.34(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}-indenyl(I)), 1.75 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$-indenyl(II)), 0.67 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}$ (I)), $0.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}(\mathrm{II})\right), 0.12\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=2.5 \mathrm{~Hz}, 24 \mathrm{H}, \mathrm{HSi}-\right.$ $\left.\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}$): $\delta 162.9 / 148.0 /$ 145.8/145.2/143.0/142.0/140.9/137.7/137.4/134.1/130.1/129.8/128.4/ 127.9/127.2/126.6/125.6/125.4/123.2/123.1/123.0/122.8/122.2/122.1/ 105.8 (s, phenyl + indenyl), 49.9 (s, indenyl-C3), 18.0 (s, $\mathrm{CH}_{3}-$ indenyl(I)), 16.9 (s, CH_{3}-indenyl(I)), $2.56\left(\mathrm{~s}, \mathrm{HSiCH}_{3}(\mathrm{I})\right.$), 2.42 (s, $\left.\mathrm{HSiCH}_{3}(\mathrm{II})\right), 0.58\left(\mathrm{~s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}(\mathrm{I})\right),-0.69\left(\mathrm{~s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}(\mathrm{II})\right)$. MS (CI): m / z (relative intensity) 821 (3) $\left[\mathrm{M}^{+}\right], 689$ (5) $\left[\mathrm{M}^{+}-\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right]$, 557 (45) $\left[\mathrm{M}^{+}-2 \mathrm{~N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right], 468$ (54) $\left[\mathrm{Me}_{2} \mathrm{Si}(2-\mathrm{Me}-4-\mathrm{Ph}-\mathrm{Ind})_{2} \mathrm{H}^{+}\right]$, 263 (100) $\left[\mathrm{Me}_{2} \mathrm{Si}(2-\mathrm{Me}-4-\mathrm{Ph}-\mathrm{Ind}) \mathrm{H}^{+}\right], 132$ (20) $\left[\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}{ }^{+}\right]$. Anal. Calcd for $\mathrm{C}_{42} \mathrm{H}_{59} \mathrm{YN}_{2} \mathrm{Si}_{5}: \mathrm{C}, 61.43 ; \mathrm{H}, 7.24 ; \mathrm{N}, 3.41$. Found: C, 59.94; H, 7.09; N, 3.16.
rac-[Bis(dimethylsilyl)amido][$\boldsymbol{\eta}^{5}: \boldsymbol{\eta}^{5}$-bis(2-methyl-4-phenylinden-1-yl)dimethylsilyl]lanthanum(III) (rac-14c). Following the procedure described above, $7 \mathrm{c}(340.1 \mathrm{mg}, 0.500 \mathrm{mmol})$ and $4(234.4 \mathrm{mg}, 0.500$ $\mathrm{mmol})$ yielded $\mathrm{rac}-\mathbf{1 4 c}(48.0 \mathrm{mg}, 0.065 \mathrm{mmol}, 13 \%)$ as lemon yellow needles (24 h of refluxing in toluene and 5 h of refluxing in mesitylene). IR (Nujol, cm^{-1}): 2923 vs, 2853 vs, 2723 w, 1832 brw $(v(\mathrm{Si}-\mathrm{H})$), 1462 vs, $1610 \mathrm{w}, 1410 \mathrm{w}, 1379 \mathrm{~s}, 1344 \mathrm{~m}, 1333 \mathrm{~m}, 1279 \mathrm{~m}, 1246 \mathrm{~s}$, $1150 \mathrm{~m}, 1037 \mathrm{~m}, 1000 \mathrm{~m}, ~ 902 \mathrm{~m}, ~ 876 \mathrm{~s}, 833 \mathrm{~s}, 807 \mathrm{~s}, 781 \mathrm{~s}, 765 \mathrm{~s}$, $748 \mathrm{~s}, 690 \mathrm{~m}, 656 \mathrm{w}, 644 \mathrm{~m}, 611 \mathrm{w}, 571 \mathrm{w}, 484 \mathrm{w}, 460 \mathrm{~m}, 449 \mathrm{~s}, 429$ m. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}$): $\delta 7.84\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.4 \mathrm{~Hz}\right.$, $2 \mathrm{H}, \mathrm{H} 7), 7.42\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 5\right), 7.35-7.25(\mathrm{~m}, 12 \mathrm{H}$, phenyl), $6.89\left(\mathrm{dd}, 2 \times{ }^{3} J(\mathrm{H}, \mathrm{H})=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 6\right), 6.59(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H} 3)$, $3.87\left(\mathrm{~m},{ }^{1} J(\mathrm{Si}, \mathrm{H})=141 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{SiH}\right), 2.58\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right.$-indenyl), $1.11\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right),-0.14\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=2.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{HSi}\left(\mathrm{CH}_{3}\right)_{2^{-}}\right.$ (I)), $-0.29\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=2.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{HSi}\left(\mathrm{CH}_{3}\right)_{2}(\mathrm{II})\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100.5 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}$): $\delta 141.0 / 136.3 / 135.3 / 131.9 / 129.3 / 128.9 /$ 127.5/127.2/123.1/121.3/120.5/108.4/100.6 (s, phenyl + indenyl), 18.2 (s, CH_{3}-indenyl), 3.22 (s, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.10\left(\mathrm{~s}, \mathrm{HSiCH}_{3}(\mathrm{I})\right), 1.95$ (s, $\mathrm{HSiCH}_{3}(\mathrm{II})$). MS (CI): m / z (relative intensity) 738 (9) $\left[\mathrm{M}^{+}\right], 468$ (54) $\left[\mathrm{Me}_{2} \mathrm{Si}(2-\mathrm{Me}-4-\mathrm{Ph}-\mathrm{Ind})_{2} \mathrm{H}^{+}\right], 263$ (100) $\left[\mathrm{Me}_{2} \mathrm{Si}(2-\mathrm{Me}-4-\mathrm{Ph}-\mathrm{Ind}) \mathrm{H}^{+}\right], 132$ (20) $\left[\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}{ }^{+}\right]$. Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{44} \mathrm{LaNSi}_{3}: \mathrm{C}, 61.85 ; \mathrm{H}, 6.01$; N, 1.90. Found: C, 61.47; H, 6.12; N, 1.75.
rac-[Bis(dimethylsilyl)amido] $\left[\boldsymbol{\eta}^{5}: \boldsymbol{\eta}^{5}\right.$-bis(2-methyl-4,5-benzoinden-1-yl)dimethylsilyl]yttrium(III) (rac-15b). Following the procedure described above, $7 \mathbf{b}(630.1 \mathrm{mg}, 1.000 \mathrm{mmol})$ and $5(416.7 \mathrm{mg}, 1.000$ $\mathrm{mmol})$ yielded rac - $\mathbf{1 5 b}(459.7 \mathrm{mg}, 0.723 \mathrm{mmol}, 72 \%)$ as light yellow prisms (18 h of refluxing in toluene and 13 h of refluxing in mesitylene). IR (Nujol, cm^{-1}): 2922 vs, 2853 vs, $2724 \mathrm{~m}, 1811$ brw ($v(\mathrm{Si}-\mathrm{H})$), $1608 \mathrm{w}, 1462 \mathrm{vs}, 1376 \mathrm{~s}, 1351 \mathrm{~m}, 1277 \mathrm{w}, 1247 \mathrm{~m}, 1241 \mathrm{~m}, 1172 \mathrm{brs}$, 1096 w, 1027 m, 973 m, 938 w, 902 m, 896 w, 868 w, 836 w, 814 w, $800 \mathrm{~m}, 766 \mathrm{~s}, 727 \mathrm{~s}, 682 \mathrm{~m}, 644 \mathrm{~m}, 467 \mathrm{~m}, 431 \mathrm{~m} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right): \delta 7.95\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 7\right), 7.93(\mathrm{~d}$, $\left.{ }^{3} J(\mathrm{H}, \mathrm{H})=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 6\right), 7.61\left(\mathrm{dd},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.7 \mathrm{~Hz},{ }^{4} J(\mathrm{H}, \mathrm{H})=\right.$ $1.3 \mathrm{~Hz}, 2 \mathrm{H}$, benzo-H), 7.27-7.18 (m, 6 H , benzo-H), $6.72(\mathrm{~s}, 2 \mathrm{H}$, H3), 2.65 (dsept, $J(\mathrm{Y}, \mathrm{H})=4.8 \mathrm{~Hz},{ }^{1} J(\mathrm{Si}, \mathrm{H})=133 \mathrm{~Hz},{ }^{3} J(\mathrm{H}, \mathrm{H})=2.5$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{SiH}), 2.56\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right.$-indenyl), $1.15\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $-0.03\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=2.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{HSiCH}_{3}(\mathrm{I})\right),-0.87\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=\right.$ $\left.2.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{HSiCH}_{3}(\mathrm{II})\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}$): $\delta 133.7 / 130.6 / 129.6 / 129.3 / 128.9 / 127.0 / 126.7 / 125.2 / 124.0 / 123.3 / 123.2 /$ 109.4/104.0 (s, C-benzoindenyl), 18.2 (s, CH_{3}-indenyl), 3.07 (s, SiCH_{3}), $2.89\left(\mathrm{~s}, \mathrm{HSiCH}_{3}(\mathrm{I})\right),-0.10\left(\mathrm{~s}, \mathrm{HSiCH}_{3}(\mathrm{II})\right) .{ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(79.5 \mathrm{MHz}$, $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}\right): \delta-15.90\left(\mathrm{~d},{ }^{1} J(\mathrm{Y}, \mathrm{Si})=1.2 \mathrm{~Hz}, \mathrm{Si}_{\text {bridge }}\right),-26.61(\mathrm{~d}$, $\left.{ }^{1} J(\mathrm{Y}, \mathrm{Si})=12.2 \mathrm{~Hz}, \mathrm{NSi}\right) .{ }^{89} \mathrm{Y}$ NMR (19.48 MHz, toluene/C ${ }_{6} \mathrm{D}_{6}, 30$ $\left.{ }^{\circ} \mathrm{C}\right): \delta-93.5\left(\mathrm{t},{ }^{1} J(\mathrm{Y}, \mathrm{H})=4.7 \mathrm{~Hz}\right) . \mathrm{MS}(\mathrm{CI}): m / z$ (relative intensity) $651(31)\left[\mathrm{M}^{+}+\mathrm{CH}_{3}\right], 636(31)\left[\mathrm{M}^{+}\right], 635(60)\left[\mathrm{M}^{+}-\mathrm{H}\right], 621(11)$ $\left[\mathrm{M}^{+}-\mathrm{CH}_{3}\right], 503(28)\left[\mathrm{M}^{+}-\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right], 416$ (58) [$\mathrm{SiMe}_{2}(\mathrm{Me}-$

Table 5. X-ray Diffraction Collection Parameters for Organolanthanide Complexes

	11c	rac-13b	rac-13e	rac-15b	rac-15e
formula	$\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{LaNSi}_{3}$	$\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{YNSi}_{3}$	$\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{LuNSi}_{3}$	$\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{YNSi}_{3} \cdot\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)_{0.5}$	$\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{LuNSi}_{3}$
formula weight	569.78	535.74	621.80	635.86•46.07	721.91
crystal system	triclinic	monoclinic	monoclinic	triclinic	triclinic
space group	$P \overline{1}$	C2/c	C2/c	$P \overline{1}$	$P \overline{1}$
a / \AA	9.529(1)	15.110(4)	15.0153(4)	11.1193(6)	11.6187(7)
b/A	11.145(1)	11.731(2)	11.8938(5)	11.9449(5)	12.1293(8)
c / \AA	13.573(1)	15.699(5)	15.7695(5)	14.8399(8)	13.9320(11)
$\alpha /$ deg	79.68(1)	90	90	72.396(5)	78.198(8)
$\beta /$ deg	83.26(1)	108.55(1)	108.145(2)	75.824(6)	67.611(8)
$\gamma /$ deg	77.61(1)	90	90	69.896(5)	63.935(7)
V / \AA^{3}	1380.4(2)	2638.2(12)	2676.21(16)	1742.2(2)	1629.1(2)
Z	2	4	4	2	2
$\rho_{\text {calcd }} / \mathrm{g} \mathrm{cm}^{-1}$	1.371	1.349	1.543	1.300	1.472
μ / cm^{-1}	16.9	23.6	38.4	18.0	31.6
$F(000)$	588	1120	1248	714	728
temperature/K	193	163	273	193	293
$\lambda(\mathrm{Mo} \mathrm{K} \alpha) / \AA$	0.71073	0.71073	0.71073	0.71073	0.71073
diffractometer	STOE-IPDS	Nonius-CAD4	Nonius-кCCD	STOE-IPDS	STOE-IPDS
scan type	φ scans	ω scans	φ scans	φ scans	φ scans
θ range/deg	1.9-24.7	2.2-26.0	4.9-25.4	2.0-24.7	3.1-25.7
no. of total/unique data	12166/4365	4534/2472	4071/2203	21813/5536	9550/5683
no. of observed data	3986	2147	2085	4525	4486
no of parameters	396	214	214	373	365
H atoms	refined	refined	refined	mixed	calcd
final $R 1^{a}$	0.0291/0.0247	0.0403/0.0318	0.0223/0.0206	0.0463/0.0358	0.0459/0.0332
final $\mathrm{w} R 2^{b}$	0.0605	0.0742	0.0474	0.0944	0.769
GOF	1.037	1.048	1.094	0.973	0.916
difference Fourier	0.91/-1.01	0.52/-0.45	0.27/-0.79	0.98/-0.45	0.74/-0.51

[^18]Benz-Ind) $)_{2} \mathrm{H}^{+}$], 237 (100) [SiMe_{2} (Me-Benz-Ind) H^{+}], 221 (7) [YN$\left.\left(\mathrm{SiHMe}_{2}\right)_{2}{ }^{+}\right], 180$ (10) [(Me-Benz-Ind) $\left.\mathrm{H}^{+}\right]$, 132 (13) $\left[\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}{ }^{+}\right]$, 118 (17) $\left[\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}{ }^{+}-\mathrm{CH}_{3}\right]$. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{NSi}_{3} \mathrm{Y}$: C, 64.22; H, 6.34; N, 2.20. Found: C, 63.58; H, 6.37; N, 2.04. Recrystallization of rac-15b from toluene results in incorporation of solvent into the crystal. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{NSi}_{3} \mathrm{Y} \cdot \mathrm{C}_{7} \mathrm{H}_{8}$: C, 67.64; H, 6.64; N, 1.94. Found: C, 66.54; H, 6.50; N, 1.94.
rac-[Bis(dimethylsilyl)amido] $\left[\eta^{5}: \eta^{5}\right.$-bis(2-methyl-4,5-benzoinden-1-yl)dimethylsilyl]lanthanum(III) (rac-15c). Following the procedure described above, 7c ($680.1 \mathrm{mg}, 1.000 \mathrm{mmol}$) and $5(416.7 \mathrm{mg}, 1.000$ mmol) yielded rac-15c ($320.3 \mathrm{mg}, 0.467 \mathrm{mmol}, 47 \%$) as light yellow prisms (18 h of refluxing in toluene and 6 h of refluxing in mesitylene). IR (Nujol, cm^{-1}): 2923 vs, 2853 vs, $2723 \mathrm{w}, 1830$ brw $(v(\mathrm{Si}-\mathrm{H})), 1610 \mathrm{w}, 1462 \mathrm{vs}, 1377 \mathrm{~s}, 1352 \mathrm{~m}, 1279 \mathrm{w}, 1250 \mathrm{~m}, 1214$ w, 1155 brs, 1096 w, $1027 \mathrm{~m}, 997 \mathrm{w}, 974 \mathrm{~m}, 938 \mathrm{w}, 897 \mathrm{~m}, 873 \mathrm{~m}$, $834 \mathrm{~m}, 812 \mathrm{~m}, 800 \mathrm{~m}, 765 \mathrm{~s}, 724 \mathrm{w}, 679 \mathrm{~m}, 645 \mathrm{w}, 466 \mathrm{~m}, 432 \mathrm{~m} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}$): $\delta 7.90\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.4 \mathrm{~Hz}, 2 \mathrm{H}\right.$, H7), $7.86\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 6\right), 7.61\left(\mathrm{dd},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.4 \mathrm{~Hz}\right.$, ${ }^{4} J(\mathrm{H}, \mathrm{H})=1.1 \mathrm{~Hz}, 2 \mathrm{H}$, benzo-H), 7.25-7.17 (m, 6 H , benzo-H), 6.72 (s, 2 H, H3), $3.30\left(\mathrm{~m},{ }^{1} J(\mathrm{Si}, \mathrm{H})=140 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{SiH}\right), 2.53(\mathrm{~s}, 6 \mathrm{H}$, CH_{3}-indenyl), $1.15\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right),-0.087\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=2.5 \mathrm{~Hz}\right.$, $\left.6 \mathrm{H}, \mathrm{HSiCH}_{3}(\mathrm{I})\right),-0.81\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=2.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{HSiCH}_{3}(\mathrm{II})\right) .{ }^{13} \mathrm{C}-$ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}\right): \delta 133.2 / 131.9 / 129.9 / 129.0 /$ 128.7/127.1/126.6/124.7/123.2/123.1/122.0/108.7/104.7 (s, C-benzoindenyl), 17.8 (s, CH_{3}-indenyl), 3.12 (s, SiCH_{3}), 1.91 ($\mathrm{s}, \mathrm{HSiCH}_{3}(\mathrm{I})$), -0.18 (s, $\mathrm{HSiCH}_{3}(\mathrm{II})$). MS (CI): m / z (relative intensity) 686 (23) $\left[\mathrm{M}^{+}\right]$, 685 (42) $\left[\mathrm{M}^{+}-\mathrm{H}\right], 671$ (14) $\left[\mathrm{M}^{+}-\mathrm{CH}_{3}\right], 553$ (33) $\left[\mathrm{M}^{+}-\right.$ $\left.\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right], 416$ (73) [$\left.\mathrm{SiMe}_{2}(\mathrm{Me}-\mathrm{Benz-Ind})_{2} \mathrm{H}^{+}\right], 237$ (100) $\left[\mathrm{SiMe}_{2}{ }^{-}\right.$ (Me-Benz-Ind) $\left.\mathrm{H}^{+}\right], 180$ (22) $\left[\left(\mathrm{Me}-\mathrm{Benz-Ind)} \mathrm{H}^{+}\right], 132\right.$ (19) [N(Si$\left.\left.\mathrm{HMe}_{2}\right)_{2}{ }^{+}\right], 118$ (11) $\left[\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}{ }^{+}-\mathrm{CH}_{3}\right]$. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{40^{-}}$ LaNSi $_{3}:$ C, $59.54 ;$ H, $5.88 ; \mathrm{N}, 2.04$. Found: C, $59.39 ; H, 6.14 ;$ N, 1.91.
rac-[Bis(dimethylsilyl)amido] $\left[\eta^{5}: \eta^{5}\right.$-bis(2-methyl-4,5-benzoinden-1-yl)dimethylsilyl]lutetium(III) (rac-15e). Following the procedure described above, 7e ($1343.7 \mathrm{mg}, 1.897 \mathrm{mmol}$) and $\mathbf{5}(790.5 \mathrm{mg}, 1.897$ mmol) yielded rac-15e ($743.6 \mathrm{mg}, 1.030 \mathrm{mmol}, 54 \%$) as light yellow prisms (18 h of refluxing in toluene and 12 h of refluxing in mesitylene). IR (Nujol, cm^{-1}): 2922 vs, 2853 vs, 2725 w, 1773 brw ($v(\mathrm{Si}-\mathrm{H})$), $1611 \mathrm{w}, 1463 \mathrm{vs}, 1377 \mathrm{~s}, 1351 \mathrm{~m}, 1276 \mathrm{w}, 1249 \mathrm{w}, 1238 \mathrm{~m}, 1162 \mathrm{~m}$, 1138 w, 1095 w, 1080 w, 1041 m, 1027 m, 991 shm, 895 w, 857 w,
$834 \mathrm{w}, 811 \mathrm{~m}, 800 \mathrm{~m}, 766 \mathrm{~m}, 741 \mathrm{~m}, 722 \mathrm{~m}, 683 \mathrm{~m}, 644 \mathrm{w}, 467 \mathrm{~m}$, $431 \mathrm{w} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}$): $\delta 7.97\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.6\right.$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H} 7), 7.89\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 6\right), 7.60\left(\mathrm{dd},{ }^{3} J(\mathrm{H}, \mathrm{H})\right.$ $=7.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}(\mathrm{H}, \mathrm{H})=1.0 \mathrm{~Hz}, 2 \mathrm{H}$, benzo- H$), 7.29-7.19(\mathrm{~m}, 6 \mathrm{H}$, benzoH), $6.75(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H} 3), 2.98$ (sept, ${ }^{1} J(\mathrm{Si}, \mathrm{H})=142 \mathrm{~Hz},{ }^{3} J(\mathrm{H}, \mathrm{H})=2.5$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{SiH}), 2.52\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right.$-indenyl), $1.14\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $-0.055\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=2.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{HSiCH}_{3}(\mathrm{I})\right),-0.77\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=\right.$ $2.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{HSiCH}_{3}(\mathrm{II})$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}$): $\delta 132.5 / 130.7 / 129.7 / 128.8 / 126.9 / 126.1 / 125.3 / 124.6 / 124.3 / 123.4 / 123.2 /$ 109.3/103.4 (s, C-benzoindenyl), 18.0 (s, $C H_{3}$-indenyl), 3.52 (s, SiCH_{3}), 2.98 ($\mathrm{s}, \mathrm{HSiCH}_{3}(\mathrm{I})$), 0.26 ($\mathrm{s}, \mathrm{HSiCH}_{3}(\mathrm{II})$). MS (CI): m / z (relative intensity) 721 (37) $\left[\mathrm{M}^{+}\right], 620(68)\left[\mathrm{M}^{+}-\mathrm{H}\right], 706$ (20) $\left[\mathrm{M}^{+}-\mathrm{CH}_{3}\right]$, 588 (41) $\left[\mathrm{M}^{+}-\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right], 416$ (45) $\left[\mathrm{SiMe}_{2}(\mathrm{Me}-\mathrm{Benz}-\mathrm{Ind})_{2} \mathrm{H}^{+}\right]$, 237 (100) [$\mathrm{SiMe}_{2}\left(\mathrm{Me}-\mathrm{Benz-Ind)} \mathrm{H}^{+}\right], 180$ (17) [(Me-Benz-Ind)H $\left.{ }^{+}\right], 132$ (14) $\left[\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}{ }^{+}\right], 118$ (21) $\left[\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}{ }^{+}-\mathrm{CH}_{3}\right]$. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{NSi}_{3} \mathrm{Lu}: \mathrm{C}, 56.67$; H, 5.58; N, 1.94. Found: C, 66.38; H, 5.69; N, 1.82.
[Bis(dimethylsily) ${ }^{\text {amido }}\left[\boldsymbol{\eta}^{5}: \boldsymbol{\eta}^{5}\right.$-bisfluoren-9-yl-dimethylsilyl]yttrium(III) (16b). Following the procedure described above, 7b (945.0 $\mathrm{mg}, 1.500 \mathrm{mmol}$) and $\mathbf{6}(583.0 \mathrm{mg}, 1.500 \mathrm{mmol})$ yielded 174 mg of an orange powder (24 h of refluxing in toluene and 5 h of refluxing in mesitylene). According to NMR spectroscopy, this powder contained about 35% of $\mathbf{1 6 b}$ in addition to unreacted bis(fluorene) and a complex containing a monocoordinated bis(fluorene). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$, $\left.25^{\circ} \mathrm{C}\right): \delta 8.11\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.1 \mathrm{~Hz}, 4 \mathrm{H}\right.$, fluorene-H), $8.08\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})\right.$ $=8.3 \mathrm{~Hz}, 4 \mathrm{H}$, fluorene- H$), 7.21\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.4 \mathrm{~Hz}, 4 \mathrm{H}\right.$, fluoreneH), $6.85\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.2 \mathrm{~Hz}, 4 \mathrm{H}\right.$, fluorene-H), 3.21 (sept, ${ }^{3} J(\mathrm{H}, \mathrm{H})=$ $2.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{SiH}), 0.96\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right),-0.13\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=2.6\right.$ $\left.\mathrm{Hz}, 12 \mathrm{H}, \mathrm{HSi}\left(\mathrm{CH}_{3}\right)_{2}\right)$.
(Tetrahydrofurano)tris[bis(dimethylsilyl)amido]yttrium(III) (17b). In a glovebox, $7 \mathbf{b}(630 \mathrm{mg}, 1.00 \mathrm{mmol})$ was placed in a $100-\mathrm{mL}$ flask with fused reflux condenser, dissolved in 20 mL of toluene, and refluxed under a slight argon purge for 12 h . Then the solvent was removed in vacuo, and the residue was dried at 10^{-4} mbar, producing $\mathbf{1 7 b}$ as a white powder ($512 \mathrm{mg}, 0.92 \mathrm{mmol}, 92 \%$). IR (Nujol, cm^{-1}): 2924 vs , 2854 vs, $2724 \mathrm{~m}, 2067 \mathrm{~s}, 1931(\mathrm{sh}) \mathrm{m}(v(\mathrm{Si}-\mathrm{H})), 1462$ vs, 1377 s , $1247 \mathrm{~s}, 1040$ brvs, $897 \mathrm{vs}, 837 \mathrm{~s}, 789 \mathrm{~m}, 784 \mathrm{~m}, 684 \mathrm{w}, 609 \mathrm{w}, 406 \mathrm{w}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}$): $\delta 4.94$ (sept, ${ }^{1} \mathrm{~J}(\mathrm{Si}, \mathrm{H})=162 \mathrm{~Hz}$, $\left.{ }^{3} J(\mathrm{H}, \mathrm{H})=2.96 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{SiH}\right), 3.75(\mathrm{brs}, 4 \mathrm{H}, \operatorname{THF}(\mathrm{I})), 1.21(\mathrm{~m}, 4 \mathrm{H}$, THF(II)), $0.37\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=3.0 \mathrm{~Hz}, 36 \mathrm{H}, \mathrm{SiCH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$
($100.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}$): $\delta 70.6$ (s, THF), 24.2 (s, THF), 2.30 (s , SiCH_{3}). ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($79.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}$): $\delta-22.39(\mathrm{~s}) . \mathrm{MS}$ (CI): $m / z($ relative intensity $)=778(13)\left[\mathrm{M}^{+}+\mathrm{Y}\left\{\mathrm{N}\left(\mathrm{SiMe}_{2} \mathrm{H}\right)_{2}\right\}\right], 557$ (2) $\left[\mathrm{M}^{+}-\mathrm{H}\right], 484(44)\left[\mathrm{M}^{+}-\mathrm{THF}+\mathrm{H}\right], 470$ (58) $\left[\mathrm{M}^{+}-\mathrm{THF}-\right.$ $\left.\mathrm{CH}_{3}\right], 426$ (100) $\left[\mathrm{M}^{+}-\mathrm{N}\left(\mathrm{SiMe}_{2} \mathrm{H}\right)_{2}\right], 353$ (36) [$\mathrm{M}^{+}-\mathrm{THF}-$ $\left.\mathrm{N}\left(\mathrm{SiMe}_{2} \mathrm{H}\right)_{2}\right], 293(69)\left[\mathrm{M}^{+}-2 \mathrm{~N}\left(\mathrm{SiMe}_{2} \mathrm{H}\right)_{2}\right], 132(58)\left[\mathrm{N}\left(\mathrm{SiMe}_{2} \mathrm{H}\right)_{2}{ }^{+}\right]$, 118 (93) $\left[\mathrm{HN}\left(\mathrm{HSiMe}_{2}\right)\left(\mathrm{SiHMe}^{+}\right]\right.$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{50} \mathrm{YN}_{3} \mathrm{OSi}_{6}$: C, 34.41; H, 9.03; N, 7.53. Found: C, 34.64; H, 8.80; N, 6.36.

X-ray Data Collection and Refinement. Single crystals of the complexes 11c, rac-13b, rac-13e, rac-15b, and rac-15e were grown at $-35^{\circ} \mathrm{C}$ from toluene $/ n$-hexane solutions. The X-ray diffraction data were collected on a Nonius CAD-4 diffractometer ${ }^{76}$ for complex rac13b, on a Nonius Kappa-CCD-system ${ }^{76}$ for rac -13e, and on a STOEIPDS 77 for 11c, rac-15b, and rac-15e.

Preliminary positions of heavy atoms were found by direct methods, ${ }^{78}$ while positions of the other non-hydrogen atoms were determined from successive Fourier difference maps coupled with initial isotropic leastsquares refinement. ${ }^{79}$ All of the non-hydrogen positions were refined anisotropically. For rac-15b, the difference Fourier synthesis showed

[^19]several electron density peaks in the vicinity of the symmetry center. These peaks correspond to a disordered toluene solvate molecule. The final least-squares refinement was performed using anisotropic thermal parameters for the non-hydrogen atoms of the metal complex and isotropic thermal parameters for the atoms of the solvate molecule. Hydrogen atoms were located from difference Fourier maps and refined for 11c, rac-13b, and rac-13e, refined only for $\mathrm{Si}-\mathrm{H}$ in the case of rac-15b, and placed in calculated positions for rac-15e. All details of the data collection and the crystal and refinement parameters are summarized in Table 5.

Acknowledgment. We thank the Deutsche Forschungsgemeinschaft for the award of a DFG fellowship to R.A.

Supporting Information Available: Tables of crystal data, structure solution and refinement, atomic coordinates, bond lengths and angles, and anisotropic thermal parameters for 11c, rac-13b, rac-13e, rac-15b, and rac-15e (PDF). X-ray crystallographic data, in CIF format, are also available. This material is available free of charge via the Internet at http://pubs.acs.org.
JA992786A

[^20]
[^0]: (1) (a) Burger, B. J.; Cotter, W. D.; Coughlin, E. B.; Chacon, S. T.; Hajela, S.; Herzog, T. A.; Köhn, R.; Mitchell, J.; Piers, W. E.; Shapiro, P. J.; Bercaw, J. E. In Ziegler Catalysts; Fink, G., Mühlhaupt, R., Brintzinger, H.-H., Eds.; Springer-Verlag: Berlin, 1995; pp 317-331. (b) Edelmann, F. T. In Metallocenes; Togni, A., Haltermann, R. L., Eds.; Wiley-VCH: Weinheim, 1998; pp 55-110. (c) Chirik, P. J.; Bercaw, J. E. In Metallocenes; Togni, A., Haltermann, R. L., Eds., Wiley-VCH: Weinheim, 1998; pp 111-152.
 (2) Maginn, R. E.; Manastyrskyj, S.; Dubeck, M. J. Am. Chem. Soc. 1963, 85, 672-676.
 (3) Watson, P. L.; Parshall, G. W. Acc. Chem. Res. 1985, 18, 51-56.
 (4) For recent reviews, see: Yasuda, H.; Tamai, H. Prog. Polym. Sci. 1993, 18, 1097-1139. (b) Yasuda, H. Top. Organomet. Chem. 1999, 2, 255-283. (c) Yasuda, H.; Ihara, E. Adv. Polym. Sci. 1999, 133, 53-101.
 (5) For recent reviews, see: (a) Edelmann, F. T. Top. Curr. Chem. 1996, 179, 247-276. (b) Anwander, R. In Applied Homogenoeus Catalysis with Organometallic Compounds; Cornils, B., Herrmann, W. A., Eds.; VCH Publishers: Weinheim, 1996; pp 866-892. (c) Molander, G. A.: Dowdy, E. C. Top. Organomet. Chem. 1999, 2, 119-154.

[^1]: (6) For examples, see: (a) Yasuda, H.; Yamamoto, H.; Yokota, K.; Miyake, S.; Nakamura, A. J. Am. Chem. Soc. 1992, 114, 4908-4910. (b) Giardello, M. A.; Yamamoto, Y.; Brard, L.; Marks, T. J. J. Am. Chem. Soc. 1995, 117, 3276-3279.

[^2]: (18) The amine elimination reaction as a route to zirconocene complexes is meanwhile established: (a) Chandra, G.; Lappert, M. F. J. Chem. Soc. A 1968, 1940-1945. (b) Hughes, A. K.; Meetsma, A.; Teuben, J. H. Organometallics 1993, 12, 1936-1945. (c) Herrmann, W. A.; Morawietz, M. J. A.; Priermeier, T. Angew. Chem. 1994, 106, 2025-2028; Angew. Chem., Int. Ed. Engl. 1994, 33, 1946-1949. (d) Diamond, G. M.; Jordan, R. F.; Petersen, J. L. Organometallics 1997, 16, 3044-3055 and references therein.
 (19) (a) Mu, Y.; Piers, W. E.; MacQuarnie, D. C.; Zaworotko, M. J.; Young, U. G., Jr. Organometallics 1996, 15, 2720-2726. (b) Hultzsch, K. C.; Spaniol, T. P.; Okuda, J. Angew. Chem. 1999, 111, 163-166; Angew. Chem., Int. Ed. Engl. 1999, 38, 227-230.
 (20) (a) Lappert, M. F.; Pearce, R. J. Chem. Soc., Chem. Commun. 1973, 126. (b) Schumann, H.; Müller, J. J. Organomet. Chem. 1978, 146, C5-C7.
 (21) Parts of this work were already communicated: (a) Anwander, R.; Eppinger, J., Spiegler, M. 214th National Meeting of the American Chemical Society, September 7-11, 1997, Las Vegas, NV. (b) Eppinger, J.; Spiegler, M.; Anwander, R. X. Workshop on Rare Earth Elements, December 3-5, 1997, Berlin, Germany.
 (22) Hieringer, W.; Eppinger, J.; Anwander, R.; Herrmann, W. A. J. Am. Chem. Soc., in press.
 (23) (a) Eppinger, J. Ph.D. Thesis, Technische Universität München, 1999. (b) Eppinger, J.; Spiegler, M.; Herrmann, W. A.; Anwander, R., unpublished results.
 (24) Jutzi, P. Dickbreder, R. Chem. Ber. 1986, 119, 1750-1754.
 (25) For ligand synthesis, see the following. (a) $\mathrm{Me}_{2} \mathrm{C}(\mathrm{IndH})_{2}$: Nifant'ev, I. E.; Ivchenko, P. V.; Kuz'mina, G.; Luzikov, Y. N.; Sitnikov, A. A.; Sizan, O. E. Synthesis 1997, 469-474. (b) $\mathrm{Me}_{2} \mathrm{Si}(2-\mathrm{Me}-\mathrm{IndH})_{2}$: Spaleck, W.; Antberger, M.; Rohrmann, J.; Winter, A.; Bachmann, B.; Kiprof, P.; Behm, J.; Herrmann, W. A. Angew. Chem. 1992, 104, 1373-1376; Angew. Chem., Int. Ed. Engl. 1992, 32, 1345-1347. (c) $\mathrm{Me}_{2} \mathrm{Si}(2-\mathrm{Me}-4-\mathrm{Ph}-\mathrm{IndH})_{2}$: Spaleck, W.; Küber, F.; Winter, A.; M.; Rohrmann, J.; Bachmann, B.; Antberger, M.; Dolle, V.; Paulus, E. P. Organometallics 1994, 13, 954-963. (d) $\mathrm{Me}_{2} \mathrm{Si}(2-\mathrm{Me}-\mathrm{Benz-IndH})_{2}$: Stehling, U.; Diebold, J.; Kirsten, R.; Roll, W.; Brintzinger, H.-H.; Jüngling, S.; Mühlhaupt, R.; Langhauser, F. Organometallics 1994, 13, 963-970. (e) For a comparable survey of structural parameters in zirconocene chlorides, see: Resconi, L.; Piemontesi, F.; Camurato, I.; Sumeijer, O.; Nifant'ev, I. E.; Ivchenko, P. V.; Kuz'mina, L. G. J. Am Chem. Soc. 1998, 120, 2308-2321.
 (26) Chen, Y.-X.; Rausch, M. D.; Chien, J. C. W. J. Organomet. Chem. 1995, 497, 1-9.

[^3]: (27) Giardello, M. A.; Conticelli, V. P.; Brard, L.; Sabat, M.; Rheingold, A. L.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1994, 116, 1021210240.
 (28) Addition of tetramethyldisilazane to the $\mathrm{Y}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{3}$ reaction will also initiate the "diene"/silylamine ligand exchange; however, this procedure is prone to side products: Eppinger, J.; Anwander, R., unpublished results.

[^4]: (29) (a) Höck, N.; Oroschin, W.; Paolucci, G.; Fischer, R. D. Angew. Chem. 1986, 98, 748-749; Angew. Chem., Int. Ed. Engl. 1986, 25, 738739. (b) Stern, D.; Sabat, M.; Marks, T. J. J. Am. Chem. Soc. 1990, 112, 9558-9575.
 (30) Herrmann, W. A.; Huber, N. W.; Behm, J. Chem. Ber. 1992, 125, 1405-1407.
 (31) Rees, W. S.; Just, O.; Schumann, H.; Weimann, R. Angew. Chem. 1996, 108, 481-483; Angew. Chem., Int. Ed. Engl. 1996, 35, 419-422. (32) Procopio, L. J.; Carrott, J. J.; Berry, D. H. J. Am. Chem. Soc. 1994, 116, 177-185.
 (33) Lou, X. J.; Kubas, G. J.; Burns, C. J.; Bryan, J. C.; Unkefer, C. J. J. Am. Chem. Soc. 1995, 117, 1159-1160.

[^5]: (34) For the interpretation of analogous upfield shifts due to aromatic ring currents, see: (a) Haigh, C. W.; Mallion, R. B. Prog. Nucl. Magn. Reson. Spectrosc. 1980, 13, 303-344. (b) Haigh, C. W.; Mallion, R. B. Org. Magn. Reson. 1972, 4, 203-228.
 (35) Calculations on the basis of the model of Haigh and Mallion ${ }^{34}$ point out that the ring current only partly contributes to the high upfield shift of the SiH proton.

[^6]: (36) The size of the coupling constant is attributable to a ${ }^{3} J_{\mathrm{Y}, \mathrm{SiH}}$ coupling rather than a ${ }^{1} J_{\mathrm{Y}, \mathrm{H}}$ one. The higher order coupling pattern of the SiH proton in the rac-form can be assigned to coupling with two diastereotopic methyl groups or additional through-space $J_{\mathrm{H}, \mathrm{H}}$ coupling via Y.
 (37) Lukevics, E.; Pudowa, O.; Sturkovich, R. Molecular Structure of Organosilicon Compounds; Ellis-Horwood: Chichester, U.K., 1989. Silicon hydrides generally display ${ }^{1} J_{\mathrm{Si}, \mathrm{H}}$ values in the range $160-200 \mathrm{~cm}^{-1}$.
 (38) ${ }^{1} J_{\mathrm{Si}, \mathrm{H}}$ values for $\mathrm{M}-\left(\eta^{2}-\mathrm{SiH}\right)$. (a) 136 Hz for $\mathrm{M}=\mathrm{Cr}$: Driess, M.; Reigys, M.; Pritzkow, H. Angew. Chem. 1992, 104, 1514-1516; Angew. Chem., Int. Ed. Engl. 1992, 31, 1510-1512. (b) 92 Hz for $\mathrm{M}=\mathrm{Ti}$: Ohff, A.; Kosse, P.; Baumann, W.; Tillack, A.; Kempe, R.; Görls, H.; Burlakov, V. V.; Rosenthal, U. J. Am. Chem. Soc. 1995, 117, 10399-10400. (c) 2070 Hz for $\mathrm{M}=\mathrm{Mo}$: Luo, X.-L.; Kubas, G. J.; Bryan, J. C.; Burns. J. C.; Unkefer, C. J. J. Am. Chem. Soc. 1994, 116, 10312-10313. (d) Crabtree, R. H.; Pritzkow, H. Angew. Chem. 1993, 105, 828-845; Angew. Chem., Int. Ed. Engl. 1993, 32, 789-805. (e) Crabtree, R. H.; Hamilton, D. G. Adv. Organomet. Chem. 1988, 28, 299-358. (f) Schubert, H. Adv. Organomet. Chem. 1990, 30, 151-187.
 (39) σ-Bond metathesis reactions involving $\mathrm{Ln}-\mathrm{C} / \mathrm{Si}-\mathrm{H}$ transpositions were reported to occur in hydrosilylation reactions: (a) Sakura, T.; Lautenschlager, H.-J.; Tanaka, M. J. Chem. Soc., Chem. Commun. 1991, 40-41. (b) Molander, G. A.; Julius, M. J. Org. Chem. 1992, 57, 63476351. (c) Onozawa, S.; Sakakura, T.; Tanaka, M. Tetrahedron Lett. 1994, 35, 8177-8180. (d) Ziegler, T.; Folga, E. J. Organomet. Chem. 1994, 478, 57-65. (e) Molander, G. A.; Nichols, P. J. J. Am. Chem. Soc. 1995, 117, 4415-4416. (f) Radu, N. S.; Tilley, T. D. J. Am. Chem. Soc. 1995, 117 , 5863-5864. (g) Fu, P.-F.; Brard, L.; Li, Y.; Marks, T. J. J. Am. Chem. Soc. 1995, 117, 7157-7168. (h) Voskoboynikov, A. Z.; Parshina, I. N.; Shestakova, A. K.; Butin, K. P.; Beletskaya, I. P.; Kuz'mina, L. G.; Howard, J. A. K. Organometallics 1997, 16, 4041-4055.
 (40) A ${ }^{2} J_{\mathrm{Si}, \mathrm{Y}}$ coupling constant of 7.7 Hz was reported for a siloxide complex, $\mathrm{Y}_{2}\left(\mathrm{OSiPh}_{3}\right)_{6}$: Coan, P. S.; Hubert-Pfalzgraf, L. G.; Caulton, K. G. Inorg. Chem. 1992, 31, 1262-1267.
 (41) ${ }^{1} J_{\mathrm{Y}, \mathrm{H}}$ coupling constants are in the range of $15-30 \mathrm{~Hz}$: Rheder, D. In Transition Metal Nuclear Magnetic Resonance; Pregosin, P. S., Ed.; Elsevier: Amsterdam, 1991; pp 4-51. ${ }^{2} J_{\mathrm{Y}, \mathrm{H}}=3.6 \mathrm{~Hz}$ for the $\mathrm{Y}\left(\mu-\mathrm{CH}_{3}\right) \mathrm{Y}$ moiety in $\left[\left(\mathrm{CH}_{3} \mathrm{C}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{Y}\left(\mu-\mathrm{CH}_{3}\right)\right]_{2}$: Evans, W. J.; Meadows, J. H.; Wayda, A. L.; Hunter, W. E.; Attwood, J. L. J. Am. Chem. Soc. 1982, 104, 20082014.

[^7]: (42) For a systematic investigation of ${ }^{89} \mathrm{Y}$ chemical shifts in metalorganic compounds, see: (a) Evans, W. J.; Meadows, J. H.; Kostka, A. G.; Closs, G. L. Organometallics 1985, 4, 324-326. (b) Schaverien, C. J. Organometallics 1994, 13, 69-82.
 (43) Similar effects have been reported for ${ }^{103}$ Rh NMR: Mann, B. E. In Transition Metal Nuclear Magnetic Resonance; Pregosin, P. S., Ed.; Elsevier: Amsterdam, 1991; pp 177-215.

[^8]: ${ }^{a} \mathrm{C}_{\mathrm{g}}=$ ring centroid. ${ }^{b} \mathrm{Ln}-\mathrm{H}$ and $\mathrm{Si}-\mathrm{H}$ distances have to be discussed carefully due to the location of the hydrogen atoms close to two heavy atoms. ${ }^{c}$ As the metallocenes rac-13b und rac-13e crystallize in a $C 2 / c$-symmetric unit cell, the atoms were labeled differently: $\mathrm{C}_{\mathrm{g}} 2=\mathrm{C}_{\mathrm{g}} 1 \mathrm{a}$; Si1 $=\mathrm{Si} 2 ; \mathrm{Si} 2=\mathrm{Si} 2 \mathrm{a} ; \mathrm{Si} 3=\mathrm{Si} 1 ; \mathrm{H} 1=\mathrm{H} 2 ; \mathrm{H} 2=\mathrm{H} 2 \mathrm{a}$.

[^9]: (44) Stern, D.; Sabat, M.; Marks, T. J. J. Am. Chem. Soc. 1990, 112, 9558-9575.
 (45) In theoretical studies the asymmetric geometry has been attributed to an interaction between the electron-deficient $\operatorname{Ln}($ III $)$ center and the electron density of the $\mathrm{Si}-\mathrm{C}$ bond: (a) Tatsumi, K.; Nakamura, A. J. Am. Chem. Soc. 1987, 109, 3195-3206. (b) Bursten, B. E.; Fang, A. Inorg. Chim. Acta 1985, 110, 153-160.
 (46) Correspondingly, the interactions discussed in this paper involve the electron density of the SiH fragment: Scherer, W. Ph.D. Thesis, Technische Universität München, 1993.
 (47) (a) A comparable Sm -Si distance of 3.0524(8) A was reported for Cp*2 $\mathrm{Sm}\left[\mathrm{SiH}\left(\mathrm{SiMe}_{3}\right)_{2}\right]:$ Radu, N. S.; Tilley, T. D.; Rheingold, A. L. J. Am. Chem. Soc. 1992, 114, 8293-8295. (b) $\left(\mathrm{Me}_{3} \mathrm{SiCH}_{2}\right) \mathrm{Y}\left[\left(\mu-\left(\mathrm{CH}_{2}\right)_{2} \mathrm{SiMe}_{2}\right][(\mu-\right.$ $\left.\left.\mathrm{OCH}_{3}\right) \mathrm{Li}(\mathrm{thf})_{2}\right]_{2}$ reveals a Y-Si distance of 3.147(2) A: Evans, W. J.; Boyle, T. J.; Ziller, W. J. J. Organomet. Chem. 1993, 462, 141-148.
 (48) All SiH hydrogens atoms were located in difference Fourier maps and successfully refined. Of course, the usual caution regarding the accuracy of hydrogen positions in heavy atom structures was applied. In fact, though a lengthening of the agostically interacting $\mathrm{Si}-\mathrm{H}$ bonds should be expected, the refined SiH positions yield bond lengths of $1.43-1.47 \mathrm{~A}$, which are even shorter than normal SiH distances in hydrosilanes (1.47-1.50 \AA; Lukevics, E.; Pudowa, O.; Sturkovich, R. Molecular Structure of Organosilicon Compounds; Ellis-Horwood: Chichester, U.K., 1989).

[^10]: (49) Examples of $\mathrm{Ln}-\mathrm{H}$ bond lengths from X-ray diffraction data include the following. (a) $2.19 / 2.17 \AA$ in $\left[\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2} \mathrm{Y}(\mu-\mathrm{H})(\mathrm{THF})\right]_{2}$: Evans, W. J.; Meadows, J. H.; Wayda, A. L.; Hunter, W. E.; Atwood, J. L. J. Am. Chem. Soc. 1982, 106, 2008-2014. (b) $2.35 \AA$ in $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Y}(\mu-\mathrm{Cl})\right]_{2}(\mu-\mathrm{H})-$ $\mathrm{AlH}_{2}\left(\mathrm{OEt}_{2}\right)$: Lobovskii, B.; Soloveichik, G. L.; Erofeev, A. B.; Bulichev, B. M.; Bel'skii, V. K. J. Organomet. Chem. 1982, 235, 151-158. (c) 1.98/ $2.13 \AA$ in $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Lu}(\mu-\mathrm{H})(\mathrm{THF})\right]_{2}$: Schumann, H.; Genthe, W.; Hahn, E.; Hossain, M. B.; van der Helm, D. J. Organomet. Chem. 1986, 299, 6784. (d) 2.59/2.25/2.29 A in $\left[\left(\mathrm{BH}_{3}\right)_{2} \mathrm{La}(\mathrm{THF})_{5}\right]\left[\left(\mathrm{BH}_{3}\right)_{4} \mathrm{La}(\mathrm{THF})_{2}\right]:$ Bel'skii, V. K.; Sobolev, A. N.; Bulychev, B. M.; Alikhanova, T. Kh.; Kurbonbekov, A.; Mirsaidov, U. Koord. Khim. 1990, 16, 1963-1969.
 (50) Den Haan, K. H.; De Boer, J. L.; Teuben, J. H.; Speck, A. L.; KojicProdic, B.; Hays, G. R.; Huis, R. Organometallics 1986, 5, 1726-1733.

[^11]: (51) Schumann, H.; Rosenthal, E. C. E.; Kociok-Köhn, G.; Molander, G. A.; Winterfeld, J. J. Organomet. Chem. 1995, 496, 233-240.
 (52) Fendrick, C. M.; Schertz, L. D.; Day, V. W.; Marks, T. J. Organometallics 1988, 7, 1828-1839.
 (53) The more covalent dimethylsilyl-bridged ferrocenyl complexes exhibit tilt angles β as large as 40.0°, affording a nearly planar arrangement of both cyclopentadienyl rings: (a) Rulhuns, R.; Lough, A. J.; Mannus, I. Angew. Chem. 1996, 108, 1929-1931; Angew. Chem., Int. Ed. Engl. 1996, 35, 1805-1807. (b) Herberhold, M.; Steffl, U.; Milius, W.; Wrackmeyer, B. Angew. Chem. 1996, 108, 1927-1929; Angew. Chem., Int. Ed. Engl. 1996, 35, 1863-1864. (c) Stoeckli-Evans, H.; Osborne, A. G.; Whiteley, R. H. Helv. Chim. Acta 1976, 59, 2402-2406.
 (54) Scholz, J.; Scholz, A.; Weimann, R.; Janiak, C.; Schumann, H. Angew. Chem. 1994, 106, 1220-1223; Angew. Chem., Int. Ed. Engl. 1994, 33, 1171-1174.
 (55) Gagne, M. R.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1992, 114, 275-294.

[^12]: (56) Shannon, R. D. Acta Crystallogr. 1976, A32, 751-767.
 (57) Klooster, W. T.; Brammer, L.; Schaverien, C. J.; Budzelaar, P. H. M. J. Am. Chem. Soc. 1999, 121, 1381-1382.
 (58) (a) Klooster, W. T.; Lu, R. S.; Anwander, R.; Evans, W. J.; Koetzle, T. F.; Bau, R. Angew. Chem. 1998, 110, 1326-1329; Angew. Chem., Int. Ed. Engl. 1998, 37, 1268-1270. (b) Evans, B. J.; Anwander, R.; Ziller, J. W.; Khan, S. I. Inorg. Chem. 1995, 34, 5927-5930.

[^13]: (61) A diagostic interaction of a bis(dimethylsilyl)alkyl moiety has been described recently: Sekiguchi, A.; Ichnohe, M.; Takahashi, M.; Kabuto, C.; Sahurai, H. Angew. Chem. 1997, 109, 1577-1579; Angew. Chem., Int. Ed. Engl. 1997, 36, 1533-1534. In contrast to the interactions described by us, this β-SiH diagostic interaction involves two different metal centers, Li^{+}cations, and hence insignificantly increased $\mathrm{Si}-\mathrm{C}-\mathrm{Si}$ angles.
 (62) For polyagostic Ln \cdots Me interactions, see: Tilley, T. D.; Andersen, R. A.; Zalkin, A. Inorg. Chem. 1984, 23, 2271-2276.

[^14]: (63) Herrmann, W. A.; Munck, F. C.; Artus, G. R. J.; Runte, O.; Anwander, R. Organometallics 1997, 16, 682-688.
 (64) So far, few $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ distances have been reported. A relatively strong $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond in methylnitrile results in a close $\mathrm{C} \cdots \mathrm{N}$ contact of 318 pm: Dulmage, W. J.; Lipscomb, W. N. Acta Crystallogr. 1951, 4, 330-335. For a recent discussion, see: Mascal, M. Chem. Commun. 1998, 303-304.
 (65) (a) Fraser, R. R.; Besse, M.; Mansour, T. S. J. Chem. Soc., Chem. Commun. 1983, 620-621. (b) Fraser, R. R.; Mansour, T. S.; Savard, S. J. Org. Chem. 1985, 50, 3232-3234. (c) Fraser, R. R.; Mansour, T. S.; Savard, S. Can. J. Chem. 1985, 63, 3505-3509 and references therein.

[^15]: (66) For reviews about $\mathrm{p} K_{\mathrm{a}}$ value estimations, see: (a) Streitwieser, A., Jr.; Juaristi, E.; Nebenzahl L. L. In Comprehensive carbanion chemistry, Part A; Buncel, E., Durst, T., Eds.; Elsevier-North Holland: Amsterdam, 1980; pp 323-382. (b) Reutov, O. A.; Beletskaya, I. P.; Butin, K. P. CHAcids; Pergamon Press: Oxford, 1978. (c) For recent advances in measurement techniques, see: Bausch, M. J.; Gong, Y. J. Am. Chem. Soc. 1994, 116, 5963-5964. (d) Bordwell, F. G.; Cheng, P.-J.; Ji, G.-Z.; Satish, A. V.; Zhang, X. J. Am. Chem. Soc. 1991, 113, 9790-9795. (e) Streitwieser, A.; Ciula, J. C.; Krom, J. A.; Thiele, G. J. Org. Chem. 1991, 56, 10741076.
 (67) Matthews, W. A.; Bares, J. E.; Bartmess, J. E.; Bordwell, F. G.; Cornforth, F. J.; Drucker, G. E.; Magolin, Z.; McCallum, R. J.; Mc. Collum, G. J., Vanier, N. R. J. Am. Chem. Soc. 1975, 97, 7006-7014.
 (68) For discussions of ssip/cip equilibria, see refs 62a,b and the following: (a) O'Brien, D. H. In Comprehensive carbanion chemistry, Part A; Buncel, E., Durst, T., Eds.; Elsevier-North Holland: Amsterdam, 1980; pp 271-322. (b) Eiermann, M.; Hafner, K. J. Am. Chem. Soc. 1992, 114, 135-140. (c) O'Brian, H. D.; Russel, R. C.; Hart, A. J. J. Am. Chem. Soc. 1979, 101, 633-639. (d) Grutzner, J. B.; Lawlor, J. M.; Jackman, L. M. J. Am. Chem. Soc. 1972, 64, 2306-2314.
 (69) Harder, S.; Lutz, M.; Straub, A. W. G. Organometallics 1997, 177, 107-113.
 (70) 1,5-Sigmatropic shifts of silyl groups at cyclopentadienyl and indenyl systems are well established in the literature. For recent examples, see: (a) Stradiotto, M.; Rigby, S. S.; Hughes, D. W.; Brook, M. A.; Bain, A. D.; McGlinchey, M. J. Organometallics 1996, 15, 5645-5652. (b) Rigby, S. S.; Gupta, H. K.; Werstiuk, N. H.; Bain, A. D.; McGlinchey, M. J. Inorg. Chim. Acta 1996, 251, 355-364. (c) Rigby, S. S.; Girard, L.; Bain, A. D.; McGlinchey, M. J. Organometallics 1995, 14, 3798-3801. (d) Chen, Y.X.; Rausch, M. D.; Chien, J. C. W. Organometallics 1993, 12, 4607-4612. For problems in $\mathrm{p} K_{\mathrm{a}}$ value determinations, caused by 1,5-sigmatropic shifts of silyl groups, see: (e) Bordwell, F. G.; Satish, A. V. J. Am. Chem. Soc. 1992, 114, 10173-10176. (f) Zhang, S.; Zhang, X.-M.; Bordwell, F. G. J. Am. Chem. Soc. 1995, 117, 602-606.
 (71) Interestingly, the silylated indenyl compounds $\mathbf{8 b}$ and $\mathbf{9 b}$ show the same diastereotopic signal pattern (two doublets) for the two silylmethyl groups as the ansa-metallocene amide complexes described above. The signals of the $\mathrm{Si}-\mathrm{H}$ moieties are shaped differently, additionally emphasizing the $\mathrm{Ln} \cdots \mathrm{HSi}$ coupling in the rare earth metallocene complexes.

[^16]: (72) $\mathrm{d}_{\pi}-\mathrm{p}_{\pi}$ interactions for silylamines have been discussed controversely, see: Ebsworth, E. A. V. Volatile Silicon Compounds; Pergamon Press: Oxford, 1963.
 (73) This could be independently proven by transsilylamination reactions of $\mathrm{NaN}\left(\mathrm{SiMe}_{3}\right)_{2}$ with bis(dimethylsilyl)amine: Eppinger, J.; Herdtweck, E.; Anwander, R. Polyhedron 1998, 17, 1195-1201.

[^17]: (74) (a) Forsyth, C. M.; Nolan, S. P.; Marks, T. J. Organometallics 1991, 10, 2543-2545. (b) Sakakura, T.; Lautenschlager, H.-J.; Nakajima, M.; Tanaka, M. Chem. Lett. 1991, 913-916.

[^18]: ${ }^{a} R 1=\sum\left(| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right|\right) / \sum\left|F_{\mathrm{o}}\right| \cdot{ }^{b} \mathrm{w} R 2=\left[\sum \mathrm{w}\left(\left|F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right|^{2}\right) / \mathrm{w} F_{\mathrm{o}}^{2}\right]^{1 / 2}$

[^19]: (76) Otwinowski, Z.; Minov, W. In Methods in Enzymology; Caster, C. W., Jr., Sweet, R. M., Eds.; Academic Press: New York, 1996; Vol. 276.
 (77) IPDS Operating System, Version 2.6; STOE\&CIE.GMBH: Darmstadt, Germany, 1995.
 (78) Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A. J. Appl. Crystallogr. 1998, 26, 343-350.

[^20]: (79) Sheldrick, G. M. SHELXL 93; Universität Göttingen, Germany, 1993.
 (80) Spek, A. L. Acta Crystallogr. A 1990, 46, C-34.

